A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS

Detalhes bibliográficos
Autor(a) principal: COSTA,A.C.
Data de Publicação: 1999
Outros Autores: HENRIQUES,A.S.W., ALVES,T.L.M., MACIEL FILHO,R., LIMA,E.L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000100006
Resumo: In this work a hybrid neural modelling methodology, which combines mass balance equations with functional link networks (FLNs), used to represent kinetic rates, is developed for bioprocesses. The simple structure of the FLNs allows the easy and rapid estimation of network weights and, consequently, the use of the hybrid model in an adaptive form. As the proposed model is able to adjust to kinetic and environmental changes, it is suitable for use in the development of optimization strategies for fed-batch bioreactors. The proposed methodology is used to model the processes for penicillin and ethanol production, and the development of an adaptive optimal control scheme is discussed using ethanol fermentation as an example.
id ABEQ-1_2720b6626abb11a61c6a3b6f6039966d
oai_identifier_str oai:scielo:S0104-66321999000100006
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONSfed-batch fermentationoptimal controlhybrid neural modellingIn this work a hybrid neural modelling methodology, which combines mass balance equations with functional link networks (FLNs), used to represent kinetic rates, is developed for bioprocesses. The simple structure of the FLNs allows the easy and rapid estimation of network weights and, consequently, the use of the hybrid model in an adaptive form. As the proposed model is able to adjust to kinetic and environmental changes, it is suitable for use in the development of optimization strategies for fed-batch bioreactors. The proposed methodology is used to model the processes for penicillin and ethanol production, and the development of an adaptive optimal control scheme is discussed using ethanol fermentation as an example.Brazilian Society of Chemical Engineering1999-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000100006Brazilian Journal of Chemical Engineering v.16 n.1 1999reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66321999000100006info:eu-repo/semantics/openAccessCOSTA,A.C.HENRIQUES,A.S.W.ALVES,T.L.M.MACIEL FILHO,R.LIMA,E.L.eng1999-04-23T00:00:00Zoai:scielo:S0104-66321999000100006Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:1999-04-23T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
title A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
spellingShingle A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
COSTA,A.C.
fed-batch fermentation
optimal control
hybrid neural modelling
title_short A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
title_full A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
title_fullStr A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
title_full_unstemmed A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
title_sort A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
author COSTA,A.C.
author_facet COSTA,A.C.
HENRIQUES,A.S.W.
ALVES,T.L.M.
MACIEL FILHO,R.
LIMA,E.L.
author_role author
author2 HENRIQUES,A.S.W.
ALVES,T.L.M.
MACIEL FILHO,R.
LIMA,E.L.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv COSTA,A.C.
HENRIQUES,A.S.W.
ALVES,T.L.M.
MACIEL FILHO,R.
LIMA,E.L.
dc.subject.por.fl_str_mv fed-batch fermentation
optimal control
hybrid neural modelling
topic fed-batch fermentation
optimal control
hybrid neural modelling
description In this work a hybrid neural modelling methodology, which combines mass balance equations with functional link networks (FLNs), used to represent kinetic rates, is developed for bioprocesses. The simple structure of the FLNs allows the easy and rapid estimation of network weights and, consequently, the use of the hybrid model in an adaptive form. As the proposed model is able to adjust to kinetic and environmental changes, it is suitable for use in the development of optimization strategies for fed-batch bioreactors. The proposed methodology is used to model the processes for penicillin and ethanol production, and the development of an adaptive optimal control scheme is discussed using ethanol fermentation as an example.
publishDate 1999
dc.date.none.fl_str_mv 1999-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000100006
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000100006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66321999000100006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.16 n.1 1999
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213170386305024