A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000100006 |
Resumo: | In this work a hybrid neural modelling methodology, which combines mass balance equations with functional link networks (FLNs), used to represent kinetic rates, is developed for bioprocesses. The simple structure of the FLNs allows the easy and rapid estimation of network weights and, consequently, the use of the hybrid model in an adaptive form. As the proposed model is able to adjust to kinetic and environmental changes, it is suitable for use in the development of optimization strategies for fed-batch bioreactors. The proposed methodology is used to model the processes for penicillin and ethanol production, and the development of an adaptive optimal control scheme is discussed using ethanol fermentation as an example. |
id |
ABEQ-1_2720b6626abb11a61c6a3b6f6039966d |
---|---|
oai_identifier_str |
oai:scielo:S0104-66321999000100006 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONSfed-batch fermentationoptimal controlhybrid neural modellingIn this work a hybrid neural modelling methodology, which combines mass balance equations with functional link networks (FLNs), used to represent kinetic rates, is developed for bioprocesses. The simple structure of the FLNs allows the easy and rapid estimation of network weights and, consequently, the use of the hybrid model in an adaptive form. As the proposed model is able to adjust to kinetic and environmental changes, it is suitable for use in the development of optimization strategies for fed-batch bioreactors. The proposed methodology is used to model the processes for penicillin and ethanol production, and the development of an adaptive optimal control scheme is discussed using ethanol fermentation as an example.Brazilian Society of Chemical Engineering1999-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000100006Brazilian Journal of Chemical Engineering v.16 n.1 1999reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66321999000100006info:eu-repo/semantics/openAccessCOSTA,A.C.HENRIQUES,A.S.W.ALVES,T.L.M.MACIEL FILHO,R.LIMA,E.L.eng1999-04-23T00:00:00Zoai:scielo:S0104-66321999000100006Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:1999-04-23T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS |
title |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS |
spellingShingle |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS COSTA,A.C. fed-batch fermentation optimal control hybrid neural modelling |
title_short |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS |
title_full |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS |
title_fullStr |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS |
title_full_unstemmed |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS |
title_sort |
A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS |
author |
COSTA,A.C. |
author_facet |
COSTA,A.C. HENRIQUES,A.S.W. ALVES,T.L.M. MACIEL FILHO,R. LIMA,E.L. |
author_role |
author |
author2 |
HENRIQUES,A.S.W. ALVES,T.L.M. MACIEL FILHO,R. LIMA,E.L. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
COSTA,A.C. HENRIQUES,A.S.W. ALVES,T.L.M. MACIEL FILHO,R. LIMA,E.L. |
dc.subject.por.fl_str_mv |
fed-batch fermentation optimal control hybrid neural modelling |
topic |
fed-batch fermentation optimal control hybrid neural modelling |
description |
In this work a hybrid neural modelling methodology, which combines mass balance equations with functional link networks (FLNs), used to represent kinetic rates, is developed for bioprocesses. The simple structure of the FLNs allows the easy and rapid estimation of network weights and, consequently, the use of the hybrid model in an adaptive form. As the proposed model is able to adjust to kinetic and environmental changes, it is suitable for use in the development of optimization strategies for fed-batch bioreactors. The proposed methodology is used to model the processes for penicillin and ethanol production, and the development of an adaptive optimal control scheme is discussed using ethanol fermentation as an example. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000100006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000100006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66321999000100006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.16 n.1 1999 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213170386305024 |