Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400002 |
Resumo: | This work presents a way to predict the biochemical oxygen demand (BOD) of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA) before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation. |
id |
ABEQ-1_2ddc6fa43b4c453a67e5600bf7b87ba6 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322002000400002 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysisArtificial neural networksPrincipal components analysisWastewater treatment and Biochemical oxygen demandThis work presents a way to predict the biochemical oxygen demand (BOD) of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA) before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation.Brazilian Society of Chemical Engineering2002-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400002Brazilian Journal of Chemical Engineering v.19 n.4 2002reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322002000400002info:eu-repo/semantics/openAccessOliveira-Esquerre,K.P.Mori,M.Bruns,R.E.eng2003-01-20T00:00:00Zoai:scielo:S0104-66322002000400002Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2003-01-20T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis |
title |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis |
spellingShingle |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis Oliveira-Esquerre,K.P. Artificial neural networks Principal components analysis Wastewater treatment and Biochemical oxygen demand |
title_short |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis |
title_full |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis |
title_fullStr |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis |
title_full_unstemmed |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis |
title_sort |
Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis |
author |
Oliveira-Esquerre,K.P. |
author_facet |
Oliveira-Esquerre,K.P. Mori,M. Bruns,R.E. |
author_role |
author |
author2 |
Mori,M. Bruns,R.E. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Oliveira-Esquerre,K.P. Mori,M. Bruns,R.E. |
dc.subject.por.fl_str_mv |
Artificial neural networks Principal components analysis Wastewater treatment and Biochemical oxygen demand |
topic |
Artificial neural networks Principal components analysis Wastewater treatment and Biochemical oxygen demand |
description |
This work presents a way to predict the biochemical oxygen demand (BOD) of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA) before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322002000400002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.19 n.4 2002 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213171165396992 |