Comparison of turbulent particle dispersion models in turbulent shear flows

Detalhes bibliográficos
Autor(a) principal: Laín,S.
Data de Publicação: 2007
Outros Autores: Grillo,C. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000300005
Resumo: This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993)), in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001), which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983) experiments), simple shear flow (Hyland et al., 1999) and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987) experiments).
id ABEQ-1_3ece84f8f33eaf5560ee1d793327326a
oai_identifier_str oai:scielo:S0104-66322007000300005
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Comparison of turbulent particle dispersion models in turbulent shear flowsTurbulenceTwo-phase flowTurbulent particle dispersionLagrangian approachThis work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993)), in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001), which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983) experiments), simple shear flow (Hyland et al., 1999) and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987) experiments).Brazilian Society of Chemical Engineering2007-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000300005Brazilian Journal of Chemical Engineering v.24 n.3 2007reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322007000300005info:eu-repo/semantics/openAccessLaín,S.Grillo,C. A.eng2007-11-23T00:00:00Zoai:scielo:S0104-66322007000300005Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2007-11-23T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Comparison of turbulent particle dispersion models in turbulent shear flows
title Comparison of turbulent particle dispersion models in turbulent shear flows
spellingShingle Comparison of turbulent particle dispersion models in turbulent shear flows
Laín,S.
Turbulence
Two-phase flow
Turbulent particle dispersion
Lagrangian approach
title_short Comparison of turbulent particle dispersion models in turbulent shear flows
title_full Comparison of turbulent particle dispersion models in turbulent shear flows
title_fullStr Comparison of turbulent particle dispersion models in turbulent shear flows
title_full_unstemmed Comparison of turbulent particle dispersion models in turbulent shear flows
title_sort Comparison of turbulent particle dispersion models in turbulent shear flows
author Laín,S.
author_facet Laín,S.
Grillo,C. A.
author_role author
author2 Grillo,C. A.
author2_role author
dc.contributor.author.fl_str_mv Laín,S.
Grillo,C. A.
dc.subject.por.fl_str_mv Turbulence
Two-phase flow
Turbulent particle dispersion
Lagrangian approach
topic Turbulence
Two-phase flow
Turbulent particle dispersion
Lagrangian approach
description This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993)), in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001), which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983) experiments), simple shear flow (Hyland et al., 1999) and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987) experiments).
publishDate 2007
dc.date.none.fl_str_mv 2007-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000300005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000300005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322007000300005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.24 n.3 2007
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213172313587712