Optimization and control of a continuous polymerization reactor
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000400012 |
Resumo: | This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized. |
id |
ABEQ-1_4139b0cf3dae8b99c85e163aac98501b |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322012000400012 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Optimization and control of a continuous polymerization reactorPolymerization reactor optimizationModel predictive controlRobust operationStyrene reactorThis work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.Brazilian Society of Chemical Engineering2012-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000400012Brazilian Journal of Chemical Engineering v.29 n.4 2012reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322012000400012info:eu-repo/semantics/openAccessAlvarez,L. A.Odloak,D.eng2013-01-03T00:00:00Zoai:scielo:S0104-66322012000400012Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2013-01-03T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Optimization and control of a continuous polymerization reactor |
title |
Optimization and control of a continuous polymerization reactor |
spellingShingle |
Optimization and control of a continuous polymerization reactor Alvarez,L. A. Polymerization reactor optimization Model predictive control Robust operation Styrene reactor |
title_short |
Optimization and control of a continuous polymerization reactor |
title_full |
Optimization and control of a continuous polymerization reactor |
title_fullStr |
Optimization and control of a continuous polymerization reactor |
title_full_unstemmed |
Optimization and control of a continuous polymerization reactor |
title_sort |
Optimization and control of a continuous polymerization reactor |
author |
Alvarez,L. A. |
author_facet |
Alvarez,L. A. Odloak,D. |
author_role |
author |
author2 |
Odloak,D. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Alvarez,L. A. Odloak,D. |
dc.subject.por.fl_str_mv |
Polymerization reactor optimization Model predictive control Robust operation Styrene reactor |
topic |
Polymerization reactor optimization Model predictive control Robust operation Styrene reactor |
description |
This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000400012 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000400012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322012000400012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.29 n.4 2012 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213173869674496 |