MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET

Detalhes bibliográficos
Autor(a) principal: Santos,B. F. dos
Data de Publicação: 2018
Outros Autores: Simiqueli,A. P. R., Ponezi,A. N., Pastore,G. M., Fileti,A. M. F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000401355
Resumo: ABSTRACT This work investigated the combination of agitation and aeration conditions in a bench-bioreactor to identify the optimal biosurfactant production from substrate based on beet peel and glycerol from a biodiesel process. Thus, a central composite rotatable design (CCRD) and responses were evaluated by response surface methodology (RSM) modeling. The optimal operation values determined were 200 rpm (agitation) and 0.5 vvm (aeration), reaching values of 1931.2 mg/L of crude biosurfactant concentration and 28.37 mN/m of surface tension. For the development of a mathematical model based on an artificial neural network (ANN), the experimental data from each run (CCRD) of the bioreactor were used. The results indicated a topology of 6-6-1 neurons with an excellent predictive capacity of biosurfactant concentration: dispersion plot with R2 of 0.995, and error criteria SSE of 0.31, MSE of 7.29×10-4 and RSME of 2.7×10-2. A soft sensor was then designed in an electronic spreadsheet, computing the biosurfactant production from secondary measurements. Furthermore, the produced biosurfactant showed the ability to remediate oil spreading, evaluated through the appearance of clear zones on the surface of water covered with oil, and also from high emulsification indexes obtained on most of the solvents tested, such as toluene (~65%).
id ABEQ-1_492cb4a0040ba834b4b2928c63841e15
oai_identifier_str oai:scielo:S0104-66322018000401355
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEETArtificial neural networkResponse surface modellingSoft sensorBeet peelOil spreadingABSTRACT This work investigated the combination of agitation and aeration conditions in a bench-bioreactor to identify the optimal biosurfactant production from substrate based on beet peel and glycerol from a biodiesel process. Thus, a central composite rotatable design (CCRD) and responses were evaluated by response surface methodology (RSM) modeling. The optimal operation values determined were 200 rpm (agitation) and 0.5 vvm (aeration), reaching values of 1931.2 mg/L of crude biosurfactant concentration and 28.37 mN/m of surface tension. For the development of a mathematical model based on an artificial neural network (ANN), the experimental data from each run (CCRD) of the bioreactor were used. The results indicated a topology of 6-6-1 neurons with an excellent predictive capacity of biosurfactant concentration: dispersion plot with R2 of 0.995, and error criteria SSE of 0.31, MSE of 7.29×10-4 and RSME of 2.7×10-2. A soft sensor was then designed in an electronic spreadsheet, computing the biosurfactant production from secondary measurements. Furthermore, the produced biosurfactant showed the ability to remediate oil spreading, evaluated through the appearance of clear zones on the surface of water covered with oil, and also from high emulsification indexes obtained on most of the solvents tested, such as toluene (~65%).Brazilian Society of Chemical Engineering2018-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000401355Brazilian Journal of Chemical Engineering v.35 n.4 2018reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20180354s20160664info:eu-repo/semantics/openAccessSantos,B. F. dosSimiqueli,A. P. R.Ponezi,A. N.Pastore,G. M.Fileti,A. M. F.eng2019-03-20T00:00:00Zoai:scielo:S0104-66322018000401355Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-03-20T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
title MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
spellingShingle MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
Santos,B. F. dos
Artificial neural network
Response surface modelling
Soft sensor
Beet peel
Oil spreading
title_short MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
title_full MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
title_fullStr MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
title_full_unstemmed MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
title_sort MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET
author Santos,B. F. dos
author_facet Santos,B. F. dos
Simiqueli,A. P. R.
Ponezi,A. N.
Pastore,G. M.
Fileti,A. M. F.
author_role author
author2 Simiqueli,A. P. R.
Ponezi,A. N.
Pastore,G. M.
Fileti,A. M. F.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Santos,B. F. dos
Simiqueli,A. P. R.
Ponezi,A. N.
Pastore,G. M.
Fileti,A. M. F.
dc.subject.por.fl_str_mv Artificial neural network
Response surface modelling
Soft sensor
Beet peel
Oil spreading
topic Artificial neural network
Response surface modelling
Soft sensor
Beet peel
Oil spreading
description ABSTRACT This work investigated the combination of agitation and aeration conditions in a bench-bioreactor to identify the optimal biosurfactant production from substrate based on beet peel and glycerol from a biodiesel process. Thus, a central composite rotatable design (CCRD) and responses were evaluated by response surface methodology (RSM) modeling. The optimal operation values determined were 200 rpm (agitation) and 0.5 vvm (aeration), reaching values of 1931.2 mg/L of crude biosurfactant concentration and 28.37 mN/m of surface tension. For the development of a mathematical model based on an artificial neural network (ANN), the experimental data from each run (CCRD) of the bioreactor were used. The results indicated a topology of 6-6-1 neurons with an excellent predictive capacity of biosurfactant concentration: dispersion plot with R2 of 0.995, and error criteria SSE of 0.31, MSE of 7.29×10-4 and RSME of 2.7×10-2. A soft sensor was then designed in an electronic spreadsheet, computing the biosurfactant production from secondary measurements. Furthermore, the produced biosurfactant showed the ability to remediate oil spreading, evaluated through the appearance of clear zones on the surface of water covered with oil, and also from high emulsification indexes obtained on most of the solvents tested, such as toluene (~65%).
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000401355
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000401355
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20180354s20160664
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.35 n.4 2018
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213176287690752