OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322015000400837 |
Resumo: | Abstract The Catalytic Wet Air Oxidation (CWAO) of phenol using copper oxide catalysts supported by γ-Al2O3, TiO2, and pillared clay was evaluated to identify which of these catalysts was the most appropriate for this reaction. The CuO/PILC, CuO/γ-Al2O3 and CuO/TiO2 catalysts were the most successful at removing phenol and resulted in more than 96% conversion. Among these catalysts, CuO/γ-Al2O3 produced the largest amount of CO2, the lowest amount of intermediate products and the lowest amount of copper leaching. These results showed that the CuO/γ-Al2O3catalyst was the best for the end of the reaction. However, the methods used in this study did not allow us to identify the most appropriate reaction time (or catalyst). An alternative approach for this problem was to quantify the costs for each reaction time. Using this approach, the CuO/γ-Al2O3 catalyst was the most economically favorable catalyst when it was used during the first hour of the reaction. |
id |
ABEQ-1_50cb6247774572fdb4622b15c1b44fd5 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322015000400837 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYSTPhenolOxidationCuOPillared clayTiO2CostsAbstract The Catalytic Wet Air Oxidation (CWAO) of phenol using copper oxide catalysts supported by γ-Al2O3, TiO2, and pillared clay was evaluated to identify which of these catalysts was the most appropriate for this reaction. The CuO/PILC, CuO/γ-Al2O3 and CuO/TiO2 catalysts were the most successful at removing phenol and resulted in more than 96% conversion. Among these catalysts, CuO/γ-Al2O3 produced the largest amount of CO2, the lowest amount of intermediate products and the lowest amount of copper leaching. These results showed that the CuO/γ-Al2O3catalyst was the best for the end of the reaction. However, the methods used in this study did not allow us to identify the most appropriate reaction time (or catalyst). An alternative approach for this problem was to quantify the costs for each reaction time. Using this approach, the CuO/γ-Al2O3 catalyst was the most economically favorable catalyst when it was used during the first hour of the reaction.Brazilian Society of Chemical Engineering2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322015000400837Brazilian Journal of Chemical Engineering v.32 n.4 2015reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20150324s00002232info:eu-repo/semantics/openAccessPires,C. A.Santos,A. C. C. dosJordão,E.eng2016-03-14T00:00:00Zoai:scielo:S0104-66322015000400837Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2016-03-14T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST |
title |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST |
spellingShingle |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST Pires,C. A. Phenol Oxidation CuO Pillared clay TiO2 Costs |
title_short |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST |
title_full |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST |
title_fullStr |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST |
title_full_unstemmed |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST |
title_sort |
OXIDATION OF PHENOL IN AQUEOUS SOLUTION WITH COPPER OXIDE CATALYSTS SUPPORTED ON γ-Al2O3, PILLARED CLAY AND TiO2: COMPARISON OF THE PERFORMANCE AND COSTS ASSOCIATED WITH EACH CATALYST |
author |
Pires,C. A. |
author_facet |
Pires,C. A. Santos,A. C. C. dos Jordão,E. |
author_role |
author |
author2 |
Santos,A. C. C. dos Jordão,E. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pires,C. A. Santos,A. C. C. dos Jordão,E. |
dc.subject.por.fl_str_mv |
Phenol Oxidation CuO Pillared clay TiO2 Costs |
topic |
Phenol Oxidation CuO Pillared clay TiO2 Costs |
description |
Abstract The Catalytic Wet Air Oxidation (CWAO) of phenol using copper oxide catalysts supported by γ-Al2O3, TiO2, and pillared clay was evaluated to identify which of these catalysts was the most appropriate for this reaction. The CuO/PILC, CuO/γ-Al2O3 and CuO/TiO2 catalysts were the most successful at removing phenol and resulted in more than 96% conversion. Among these catalysts, CuO/γ-Al2O3 produced the largest amount of CO2, the lowest amount of intermediate products and the lowest amount of copper leaching. These results showed that the CuO/γ-Al2O3catalyst was the best for the end of the reaction. However, the methods used in this study did not allow us to identify the most appropriate reaction time (or catalyst). An alternative approach for this problem was to quantify the costs for each reaction time. Using this approach, the CuO/γ-Al2O3 catalyst was the most economically favorable catalyst when it was used during the first hour of the reaction. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322015000400837 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322015000400837 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0104-6632.20150324s00002232 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.32 n.4 2015 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213175002136576 |