Evaluation of drying and degradation kinetics using neurocomputing

Detalhes bibliográficos
Autor(a) principal: Kaminski,W.
Data de Publicação: 2000
Outros Autores: Tomczak,E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400060
Resumo: Application of artificial neural network (ANN) in chemical engineering with special reference to drying process is discussed in the paper. Two types of networks: RBF and MLP, which are important for the description of a process dynamics, are presented. As an example drying and degradation of ascorbic acid in agricultural products are considered. The final conclusion supported with experimental data states that the type of ANN should be carefully selected because the real capability of the ANN model for a given dynamic problem is expressed in recurrent working mode.
id ABEQ-1_66f8d49ed89878d6de6c1186fb1e9f62
oai_identifier_str oai:scielo:S0104-66322000000400060
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Evaluation of drying and degradation kinetics using neurocomputingdryingdegradation of ascorbic acidmodelling of dynamic processesApplication of artificial neural network (ANN) in chemical engineering with special reference to drying process is discussed in the paper. Two types of networks: RBF and MLP, which are important for the description of a process dynamics, are presented. As an example drying and degradation of ascorbic acid in agricultural products are considered. The final conclusion supported with experimental data states that the type of ANN should be carefully selected because the real capability of the ANN model for a given dynamic problem is expressed in recurrent working mode.Brazilian Society of Chemical Engineering2000-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400060Brazilian Journal of Chemical Engineering v.17 n.4-7 2000reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322000000400060info:eu-repo/semantics/openAccessKaminski,W.Tomczak,E.eng2001-03-16T00:00:00Zoai:scielo:S0104-66322000000400060Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2001-03-16T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Evaluation of drying and degradation kinetics using neurocomputing
title Evaluation of drying and degradation kinetics using neurocomputing
spellingShingle Evaluation of drying and degradation kinetics using neurocomputing
Kaminski,W.
drying
degradation of ascorbic acid
modelling of dynamic processes
title_short Evaluation of drying and degradation kinetics using neurocomputing
title_full Evaluation of drying and degradation kinetics using neurocomputing
title_fullStr Evaluation of drying and degradation kinetics using neurocomputing
title_full_unstemmed Evaluation of drying and degradation kinetics using neurocomputing
title_sort Evaluation of drying and degradation kinetics using neurocomputing
author Kaminski,W.
author_facet Kaminski,W.
Tomczak,E.
author_role author
author2 Tomczak,E.
author2_role author
dc.contributor.author.fl_str_mv Kaminski,W.
Tomczak,E.
dc.subject.por.fl_str_mv drying
degradation of ascorbic acid
modelling of dynamic processes
topic drying
degradation of ascorbic acid
modelling of dynamic processes
description Application of artificial neural network (ANN) in chemical engineering with special reference to drying process is discussed in the paper. Two types of networks: RBF and MLP, which are important for the description of a process dynamics, are presented. As an example drying and degradation of ascorbic acid in agricultural products are considered. The final conclusion supported with experimental data states that the type of ANN should be carefully selected because the real capability of the ANN model for a given dynamic problem is expressed in recurrent working mode.
publishDate 2000
dc.date.none.fl_str_mv 2000-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400060
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400060
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322000000400060
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.17 n.4-7 2000
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213170803638272