Evaluation of drying and degradation kinetics using neurocomputing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400060 |
Resumo: | Application of artificial neural network (ANN) in chemical engineering with special reference to drying process is discussed in the paper. Two types of networks: RBF and MLP, which are important for the description of a process dynamics, are presented. As an example drying and degradation of ascorbic acid in agricultural products are considered. The final conclusion supported with experimental data states that the type of ANN should be carefully selected because the real capability of the ANN model for a given dynamic problem is expressed in recurrent working mode. |
id |
ABEQ-1_66f8d49ed89878d6de6c1186fb1e9f62 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322000000400060 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Evaluation of drying and degradation kinetics using neurocomputingdryingdegradation of ascorbic acidmodelling of dynamic processesApplication of artificial neural network (ANN) in chemical engineering with special reference to drying process is discussed in the paper. Two types of networks: RBF and MLP, which are important for the description of a process dynamics, are presented. As an example drying and degradation of ascorbic acid in agricultural products are considered. The final conclusion supported with experimental data states that the type of ANN should be carefully selected because the real capability of the ANN model for a given dynamic problem is expressed in recurrent working mode.Brazilian Society of Chemical Engineering2000-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400060Brazilian Journal of Chemical Engineering v.17 n.4-7 2000reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322000000400060info:eu-repo/semantics/openAccessKaminski,W.Tomczak,E.eng2001-03-16T00:00:00Zoai:scielo:S0104-66322000000400060Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2001-03-16T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Evaluation of drying and degradation kinetics using neurocomputing |
title |
Evaluation of drying and degradation kinetics using neurocomputing |
spellingShingle |
Evaluation of drying and degradation kinetics using neurocomputing Kaminski,W. drying degradation of ascorbic acid modelling of dynamic processes |
title_short |
Evaluation of drying and degradation kinetics using neurocomputing |
title_full |
Evaluation of drying and degradation kinetics using neurocomputing |
title_fullStr |
Evaluation of drying and degradation kinetics using neurocomputing |
title_full_unstemmed |
Evaluation of drying and degradation kinetics using neurocomputing |
title_sort |
Evaluation of drying and degradation kinetics using neurocomputing |
author |
Kaminski,W. |
author_facet |
Kaminski,W. Tomczak,E. |
author_role |
author |
author2 |
Tomczak,E. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kaminski,W. Tomczak,E. |
dc.subject.por.fl_str_mv |
drying degradation of ascorbic acid modelling of dynamic processes |
topic |
drying degradation of ascorbic acid modelling of dynamic processes |
description |
Application of artificial neural network (ANN) in chemical engineering with special reference to drying process is discussed in the paper. Two types of networks: RBF and MLP, which are important for the description of a process dynamics, are presented. As an example drying and degradation of ascorbic acid in agricultural products are considered. The final conclusion supported with experimental data states that the type of ANN should be carefully selected because the real capability of the ANN model for a given dynamic problem is expressed in recurrent working mode. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400060 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400060 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322000000400060 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.17 n.4-7 2000 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213170803638272 |