KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401561 |
Resumo: | Abstract This work presents a modeling procedure for a tall photocatalytic fluidized bed photoreactor used for the photocatalytic oxidation of n-hexane on the anatase TiO2 surface. The modeling strategy split the reactor into two parts: a lower dense phase, with high solids concentration behaving as a bubbling bed treated as a continuous stirred tank reactor (CSTR); and an upper lean phase of low solids concentration behaving as a plug-flow reactor (PFR). The Langmuir-type kinetic parameters were obtained for the flow rate of 1.67 × 10-4 m3 s-1 and catalyst mass of 0.1 kg. The model revealed a good adjustment with experimental data when predicting conversion results for the same experimental conditions, but deviations grew as flow rates and catalyst loads departed from those values in which the model was obtained. |
id |
ABEQ-1_692fdc6c780510c27232beb849cab2a6 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322019000401561 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATIONAir treatmentPhotocatalysisVOCFluidized bedN-hexanePhotoreactorAbstract This work presents a modeling procedure for a tall photocatalytic fluidized bed photoreactor used for the photocatalytic oxidation of n-hexane on the anatase TiO2 surface. The modeling strategy split the reactor into two parts: a lower dense phase, with high solids concentration behaving as a bubbling bed treated as a continuous stirred tank reactor (CSTR); and an upper lean phase of low solids concentration behaving as a plug-flow reactor (PFR). The Langmuir-type kinetic parameters were obtained for the flow rate of 1.67 × 10-4 m3 s-1 and catalyst mass of 0.1 kg. The model revealed a good adjustment with experimental data when predicting conversion results for the same experimental conditions, but deviations grew as flow rates and catalyst loads departed from those values in which the model was obtained.Brazilian Society of Chemical Engineering2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401561Brazilian Journal of Chemical Engineering v.36 n.4 2019reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20190364s20180558info:eu-repo/semantics/openAccessMatsumoto,DanielleDiniz,Leonardo AlmeidaCastro,Letícia SilvaTeixeira,Antonio Carlos Silva CostaGuardani,RobertoPaiva,José Luis deeng2020-01-08T00:00:00Zoai:scielo:S0104-66322019000401561Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2020-01-08T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION |
title |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION |
spellingShingle |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION Matsumoto,Danielle Air treatment Photocatalysis VOC Fluidized bed N-hexane Photoreactor |
title_short |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION |
title_full |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION |
title_fullStr |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION |
title_full_unstemmed |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION |
title_sort |
KINETIC MODELING AND EXPERIMENTAL VALIDATION OF A PHOTOCATALYTIC FLUIDIZED BED REACTOR FOR n-HEXANE DEGRADATION |
author |
Matsumoto,Danielle |
author_facet |
Matsumoto,Danielle Diniz,Leonardo Almeida Castro,Letícia Silva Teixeira,Antonio Carlos Silva Costa Guardani,Roberto Paiva,José Luis de |
author_role |
author |
author2 |
Diniz,Leonardo Almeida Castro,Letícia Silva Teixeira,Antonio Carlos Silva Costa Guardani,Roberto Paiva,José Luis de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Matsumoto,Danielle Diniz,Leonardo Almeida Castro,Letícia Silva Teixeira,Antonio Carlos Silva Costa Guardani,Roberto Paiva,José Luis de |
dc.subject.por.fl_str_mv |
Air treatment Photocatalysis VOC Fluidized bed N-hexane Photoreactor |
topic |
Air treatment Photocatalysis VOC Fluidized bed N-hexane Photoreactor |
description |
Abstract This work presents a modeling procedure for a tall photocatalytic fluidized bed photoreactor used for the photocatalytic oxidation of n-hexane on the anatase TiO2 surface. The modeling strategy split the reactor into two parts: a lower dense phase, with high solids concentration behaving as a bubbling bed treated as a continuous stirred tank reactor (CSTR); and an upper lean phase of low solids concentration behaving as a plug-flow reactor (PFR). The Langmuir-type kinetic parameters were obtained for the flow rate of 1.67 × 10-4 m3 s-1 and catalyst mass of 0.1 kg. The model revealed a good adjustment with experimental data when predicting conversion results for the same experimental conditions, but deviations grew as flow rates and catalyst loads departed from those values in which the model was obtained. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401561 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401561 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0104-6632.20190364s20180558 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.36 n.4 2019 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213176737529856 |