Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes

Detalhes bibliográficos
Autor(a) principal: Ahmed,S. A.
Data de Publicação: 2012
Outros Autores: Helmy,W. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000100008
Resumo: The properties of a milk clotting enzyme (MCE) produced by bacteria (Bacillus licheniformis 5A5) were investigated and compared to those of rennet extracted from a plant (Aloe variegata). Production of MCE by B. licheniformis 5A5 was better in static than in shaken cultures. Maximum activity (98.3 and 160.3 U/ml) of clotting was obtained at 75ºC and 80ºC with bacterial and plant rennet, respectively. In the absence of substrate, the clotting activity of Aloe MCE was found to be less sensitive to heat inactivation up to 80ºC for 75 min, retaining 63.8% of its activity, while bacterial MCE was completely inhibited. CaCl2 stimulated milk clotting activity (MCA) up to 2% and 1.5% for bacterial and plant enzymes. NaCl inhibited MCA for both enzymes, even at low concentration (1%). Plant MCE was more sensitive to NaCl at 3% concentration it retained 30.2% of its activity, whereas bacterial MCE retained 64.1%. Increasing skim milk concentration caused a significant increase in MCA up to 6% for both enzymes. Mn2+ stimulated the activity of bacterial and plant enzymes to 158.6 and 177.9%, respectively. EDTA and PMSF increased the activity of plant MCE by 34.4 and 41.1%, respectively, which is higher than those for the bacterial MCE (19.1 and 20.9%). Some natural materials activated MCE, the highest activation of bacterial MCE (128.1%) was obtained in the presence of Fenugreek (with acid extraction). However Lupine Giza 1 (with neutral extraction) gave the highest activation of plant MCE (137.9%). All extracts from Neem plant increased MCA at range from 105.6% to 136.4%. Plant MCE exhibited much better stability when stored at room temperature (25-30ºC) for 30 days, retaining 51.2% of its activity. Bacterial MCE was highly stabile when stored under freezing (-18ºC), retaining 100% of its activity after 30 days. Moreover, bacterial MCE was highly tolerant to repeated freezing and thawing without loss of activity for 8 months.
id ABEQ-1_69ae5550e1e270f1326abc6e78478ff4
oai_identifier_str oai:scielo:S0104-66322012000100008
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymesBacterial rennetPlant rennetStabilityMCEThe properties of a milk clotting enzyme (MCE) produced by bacteria (Bacillus licheniformis 5A5) were investigated and compared to those of rennet extracted from a plant (Aloe variegata). Production of MCE by B. licheniformis 5A5 was better in static than in shaken cultures. Maximum activity (98.3 and 160.3 U/ml) of clotting was obtained at 75ºC and 80ºC with bacterial and plant rennet, respectively. In the absence of substrate, the clotting activity of Aloe MCE was found to be less sensitive to heat inactivation up to 80ºC for 75 min, retaining 63.8% of its activity, while bacterial MCE was completely inhibited. CaCl2 stimulated milk clotting activity (MCA) up to 2% and 1.5% for bacterial and plant enzymes. NaCl inhibited MCA for both enzymes, even at low concentration (1%). Plant MCE was more sensitive to NaCl at 3% concentration it retained 30.2% of its activity, whereas bacterial MCE retained 64.1%. Increasing skim milk concentration caused a significant increase in MCA up to 6% for both enzymes. Mn2+ stimulated the activity of bacterial and plant enzymes to 158.6 and 177.9%, respectively. EDTA and PMSF increased the activity of plant MCE by 34.4 and 41.1%, respectively, which is higher than those for the bacterial MCE (19.1 and 20.9%). Some natural materials activated MCE, the highest activation of bacterial MCE (128.1%) was obtained in the presence of Fenugreek (with acid extraction). However Lupine Giza 1 (with neutral extraction) gave the highest activation of plant MCE (137.9%). All extracts from Neem plant increased MCA at range from 105.6% to 136.4%. Plant MCE exhibited much better stability when stored at room temperature (25-30ºC) for 30 days, retaining 51.2% of its activity. Bacterial MCE was highly stabile when stored under freezing (-18ºC), retaining 100% of its activity after 30 days. Moreover, bacterial MCE was highly tolerant to repeated freezing and thawing without loss of activity for 8 months.Brazilian Society of Chemical Engineering2012-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000100008Brazilian Journal of Chemical Engineering v.29 n.1 2012reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322012000100008info:eu-repo/semantics/openAccessAhmed,S. A.Helmy,W. A.eng2012-03-08T00:00:00Zoai:scielo:S0104-66322012000100008Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2012-03-08T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes
title Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes
spellingShingle Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes
Ahmed,S. A.
Bacterial rennet
Plant rennet
Stability
MCE
title_short Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes
title_full Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes
title_fullStr Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes
title_full_unstemmed Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes
title_sort Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes
author Ahmed,S. A.
author_facet Ahmed,S. A.
Helmy,W. A.
author_role author
author2 Helmy,W. A.
author2_role author
dc.contributor.author.fl_str_mv Ahmed,S. A.
Helmy,W. A.
dc.subject.por.fl_str_mv Bacterial rennet
Plant rennet
Stability
MCE
topic Bacterial rennet
Plant rennet
Stability
MCE
description The properties of a milk clotting enzyme (MCE) produced by bacteria (Bacillus licheniformis 5A5) were investigated and compared to those of rennet extracted from a plant (Aloe variegata). Production of MCE by B. licheniformis 5A5 was better in static than in shaken cultures. Maximum activity (98.3 and 160.3 U/ml) of clotting was obtained at 75ºC and 80ºC with bacterial and plant rennet, respectively. In the absence of substrate, the clotting activity of Aloe MCE was found to be less sensitive to heat inactivation up to 80ºC for 75 min, retaining 63.8% of its activity, while bacterial MCE was completely inhibited. CaCl2 stimulated milk clotting activity (MCA) up to 2% and 1.5% for bacterial and plant enzymes. NaCl inhibited MCA for both enzymes, even at low concentration (1%). Plant MCE was more sensitive to NaCl at 3% concentration it retained 30.2% of its activity, whereas bacterial MCE retained 64.1%. Increasing skim milk concentration caused a significant increase in MCA up to 6% for both enzymes. Mn2+ stimulated the activity of bacterial and plant enzymes to 158.6 and 177.9%, respectively. EDTA and PMSF increased the activity of plant MCE by 34.4 and 41.1%, respectively, which is higher than those for the bacterial MCE (19.1 and 20.9%). Some natural materials activated MCE, the highest activation of bacterial MCE (128.1%) was obtained in the presence of Fenugreek (with acid extraction). However Lupine Giza 1 (with neutral extraction) gave the highest activation of plant MCE (137.9%). All extracts from Neem plant increased MCA at range from 105.6% to 136.4%. Plant MCE exhibited much better stability when stored at room temperature (25-30ºC) for 30 days, retaining 51.2% of its activity. Bacterial MCE was highly stabile when stored under freezing (-18ºC), retaining 100% of its activity after 30 days. Moreover, bacterial MCE was highly tolerant to repeated freezing and thawing without loss of activity for 8 months.
publishDate 2012
dc.date.none.fl_str_mv 2012-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000100008
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000100008
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322012000100008
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.29 n.1 2012
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213173525741568