MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS

Detalhes bibliográficos
Autor(a) principal: Santos,M. S.
Data de Publicação: 2016
Outros Autores: Tavares,F. W., Biscaia Jr,E. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300515
Resumo: Abstract Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical). We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions.
id ABEQ-1_6b1614386524df5fec0f7b51c7ad83bf
oai_identifier_str oai:scielo:S0104-66322016000300515
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONSMicellizationMolecular thermodynamicsAbstract Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical). We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions.Brazilian Society of Chemical Engineering2016-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300515Brazilian Journal of Chemical Engineering v.33 n.3 2016reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20160333s20150129info:eu-repo/semantics/openAccessSantos,M. S.Tavares,F. W.Biscaia Jr,E. C.eng2016-11-18T00:00:00Zoai:scielo:S0104-66322016000300515Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2016-11-18T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
title MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
spellingShingle MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
Santos,M. S.
Micellization
Molecular thermodynamics
title_short MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
title_full MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
title_fullStr MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
title_full_unstemmed MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
title_sort MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
author Santos,M. S.
author_facet Santos,M. S.
Tavares,F. W.
Biscaia Jr,E. C.
author_role author
author2 Tavares,F. W.
Biscaia Jr,E. C.
author2_role author
author
dc.contributor.author.fl_str_mv Santos,M. S.
Tavares,F. W.
Biscaia Jr,E. C.
dc.subject.por.fl_str_mv Micellization
Molecular thermodynamics
topic Micellization
Molecular thermodynamics
description Abstract Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical). We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300515
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300515
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20160333s20150129
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.33 n.3 2016
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213175097556992