MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300515 |
Resumo: | Abstract Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical). We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions. |
id |
ABEQ-1_6b1614386524df5fec0f7b51c7ad83bf |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322016000300515 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONSMicellizationMolecular thermodynamicsAbstract Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical). We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions.Brazilian Society of Chemical Engineering2016-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300515Brazilian Journal of Chemical Engineering v.33 n.3 2016reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20160333s20150129info:eu-repo/semantics/openAccessSantos,M. S.Tavares,F. W.Biscaia Jr,E. C.eng2016-11-18T00:00:00Zoai:scielo:S0104-66322016000300515Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2016-11-18T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS |
title |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS |
spellingShingle |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS Santos,M. S. Micellization Molecular thermodynamics |
title_short |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS |
title_full |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS |
title_fullStr |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS |
title_full_unstemmed |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS |
title_sort |
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS |
author |
Santos,M. S. |
author_facet |
Santos,M. S. Tavares,F. W. Biscaia Jr,E. C. |
author_role |
author |
author2 |
Tavares,F. W. Biscaia Jr,E. C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santos,M. S. Tavares,F. W. Biscaia Jr,E. C. |
dc.subject.por.fl_str_mv |
Micellization Molecular thermodynamics |
topic |
Micellization Molecular thermodynamics |
description |
Abstract Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical). We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300515 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300515 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0104-6632.20160333s20150129 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.33 n.3 2016 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213175097556992 |