Iterative feedback tuning of uncertain state space systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300010 |
Resumo: | Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned. |
id |
ABEQ-1_72be164f2cb018ea28dbf5e53fc5d9e8 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322010000300010 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Iterative feedback tuning of uncertain state space systemsDriven TuningIterative Feedback TuningLQG ControlModel UncertaintyIterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned.Brazilian Society of Chemical Engineering2010-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300010Brazilian Journal of Chemical Engineering v.27 n.3 2010reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322010000300010info:eu-repo/semantics/openAccessHuusom,J. K.Poulsen,N. K.Jørgensen,S. B.eng2010-11-29T00:00:00Zoai:scielo:S0104-66322010000300010Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2010-11-29T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Iterative feedback tuning of uncertain state space systems |
title |
Iterative feedback tuning of uncertain state space systems |
spellingShingle |
Iterative feedback tuning of uncertain state space systems Huusom,J. K. Driven Tuning Iterative Feedback Tuning LQG Control Model Uncertainty |
title_short |
Iterative feedback tuning of uncertain state space systems |
title_full |
Iterative feedback tuning of uncertain state space systems |
title_fullStr |
Iterative feedback tuning of uncertain state space systems |
title_full_unstemmed |
Iterative feedback tuning of uncertain state space systems |
title_sort |
Iterative feedback tuning of uncertain state space systems |
author |
Huusom,J. K. |
author_facet |
Huusom,J. K. Poulsen,N. K. Jørgensen,S. B. |
author_role |
author |
author2 |
Poulsen,N. K. Jørgensen,S. B. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Huusom,J. K. Poulsen,N. K. Jørgensen,S. B. |
dc.subject.por.fl_str_mv |
Driven Tuning Iterative Feedback Tuning LQG Control Model Uncertainty |
topic |
Driven Tuning Iterative Feedback Tuning LQG Control Model Uncertainty |
description |
Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300010 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300010 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322010000300010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.27 n.3 2010 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213173136719872 |