Iterative feedback tuning of uncertain state space systems

Detalhes bibliográficos
Autor(a) principal: Huusom,J. K.
Data de Publicação: 2010
Outros Autores: Poulsen,N. K., Jørgensen,S. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300010
Resumo: Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned.
id ABEQ-1_72be164f2cb018ea28dbf5e53fc5d9e8
oai_identifier_str oai:scielo:S0104-66322010000300010
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Iterative feedback tuning of uncertain state space systemsDriven TuningIterative Feedback TuningLQG ControlModel UncertaintyIterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned.Brazilian Society of Chemical Engineering2010-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300010Brazilian Journal of Chemical Engineering v.27 n.3 2010reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322010000300010info:eu-repo/semantics/openAccessHuusom,J. K.Poulsen,N. K.Jørgensen,S. B.eng2010-11-29T00:00:00Zoai:scielo:S0104-66322010000300010Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2010-11-29T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Iterative feedback tuning of uncertain state space systems
title Iterative feedback tuning of uncertain state space systems
spellingShingle Iterative feedback tuning of uncertain state space systems
Huusom,J. K.
Driven Tuning
Iterative Feedback Tuning
LQG Control
Model Uncertainty
title_short Iterative feedback tuning of uncertain state space systems
title_full Iterative feedback tuning of uncertain state space systems
title_fullStr Iterative feedback tuning of uncertain state space systems
title_full_unstemmed Iterative feedback tuning of uncertain state space systems
title_sort Iterative feedback tuning of uncertain state space systems
author Huusom,J. K.
author_facet Huusom,J. K.
Poulsen,N. K.
Jørgensen,S. B.
author_role author
author2 Poulsen,N. K.
Jørgensen,S. B.
author2_role author
author
dc.contributor.author.fl_str_mv Huusom,J. K.
Poulsen,N. K.
Jørgensen,S. B.
dc.subject.por.fl_str_mv Driven Tuning
Iterative Feedback Tuning
LQG Control
Model Uncertainty
topic Driven Tuning
Iterative Feedback Tuning
LQG Control
Model Uncertainty
description Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned.
publishDate 2010
dc.date.none.fl_str_mv 2010-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300010
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000300010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322010000300010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.27 n.3 2010
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213173136719872