PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301081 |
Resumo: | Abstract This paper discusses kappa number prediction models using Single Exponential Smoothing, Multiple Linear Regression Analysis, the Time Series Method of Box-Jenkins (ARIMA) and Artificial Neural Networks. Applying a database of an industrial eucalyptus Kraft pulp continuous digester, these four different methods were evaluated according to different statistical decision criteria. After fitting the parameters of the models, validations were performed using a new dataset. Results, advantages and limitations of the four methods were compared. Some statistical forecasting indexes indicate that the ARIMA model showed more accurate estimation results, achieving a MAPE lower than 3 % and over 90% of the prediction data deviations lower than one kappa unit. |
id |
ABEQ-1_77bd5bb97bf3b121a8784ff0e43ebc8c |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322018000301081 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODSKraft pulpingcontinuous digesterstatistical methodsneural network applicationsAbstract This paper discusses kappa number prediction models using Single Exponential Smoothing, Multiple Linear Regression Analysis, the Time Series Method of Box-Jenkins (ARIMA) and Artificial Neural Networks. Applying a database of an industrial eucalyptus Kraft pulp continuous digester, these four different methods were evaluated according to different statistical decision criteria. After fitting the parameters of the models, validations were performed using a new dataset. Results, advantages and limitations of the four methods were compared. Some statistical forecasting indexes indicate that the ARIMA model showed more accurate estimation results, achieving a MAPE lower than 3 % and over 90% of the prediction data deviations lower than one kappa unit.Brazilian Society of Chemical Engineering2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301081Brazilian Journal of Chemical Engineering v.35 n.3 2018reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20180353s20160678info:eu-repo/semantics/openAccessCorreia,Flávio Marcelod'Angelo,José Vicente HallakAlmeida,Gustavo MatheusMingoti,Sueli Aparecidaeng2019-01-15T00:00:00Zoai:scielo:S0104-66322018000301081Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-01-15T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS |
title |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS |
spellingShingle |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS Correia,Flávio Marcelo Kraft pulping continuous digester statistical methods neural network applications |
title_short |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS |
title_full |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS |
title_fullStr |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS |
title_full_unstemmed |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS |
title_sort |
PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS |
author |
Correia,Flávio Marcelo |
author_facet |
Correia,Flávio Marcelo d'Angelo,José Vicente Hallak Almeida,Gustavo Matheus Mingoti,Sueli Aparecida |
author_role |
author |
author2 |
d'Angelo,José Vicente Hallak Almeida,Gustavo Matheus Mingoti,Sueli Aparecida |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Correia,Flávio Marcelo d'Angelo,José Vicente Hallak Almeida,Gustavo Matheus Mingoti,Sueli Aparecida |
dc.subject.por.fl_str_mv |
Kraft pulping continuous digester statistical methods neural network applications |
topic |
Kraft pulping continuous digester statistical methods neural network applications |
description |
Abstract This paper discusses kappa number prediction models using Single Exponential Smoothing, Multiple Linear Regression Analysis, the Time Series Method of Box-Jenkins (ARIMA) and Artificial Neural Networks. Applying a database of an industrial eucalyptus Kraft pulp continuous digester, these four different methods were evaluated according to different statistical decision criteria. After fitting the parameters of the models, validations were performed using a new dataset. Results, advantages and limitations of the four methods were compared. Some statistical forecasting indexes indicate that the ARIMA model showed more accurate estimation results, achieving a MAPE lower than 3 % and over 90% of the prediction data deviations lower than one kappa unit. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301081 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301081 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0104-6632.20180353s20160678 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.35 n.3 2018 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213176247844864 |