PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS

Detalhes bibliográficos
Autor(a) principal: Correia,Flávio Marcelo
Data de Publicação: 2018
Outros Autores: d'Angelo,José Vicente Hallak, Almeida,Gustavo Matheus, Mingoti,Sueli Aparecida
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301081
Resumo: Abstract This paper discusses kappa number prediction models using Single Exponential Smoothing, Multiple Linear Regression Analysis, the Time Series Method of Box-Jenkins (ARIMA) and Artificial Neural Networks. Applying a database of an industrial eucalyptus Kraft pulp continuous digester, these four different methods were evaluated according to different statistical decision criteria. After fitting the parameters of the models, validations were performed using a new dataset. Results, advantages and limitations of the four methods were compared. Some statistical forecasting indexes indicate that the ARIMA model showed more accurate estimation results, achieving a MAPE lower than 3 % and over 90% of the prediction data deviations lower than one kappa unit.
id ABEQ-1_77bd5bb97bf3b121a8784ff0e43ebc8c
oai_identifier_str oai:scielo:S0104-66322018000301081
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODSKraft pulpingcontinuous digesterstatistical methodsneural network applicationsAbstract This paper discusses kappa number prediction models using Single Exponential Smoothing, Multiple Linear Regression Analysis, the Time Series Method of Box-Jenkins (ARIMA) and Artificial Neural Networks. Applying a database of an industrial eucalyptus Kraft pulp continuous digester, these four different methods were evaluated according to different statistical decision criteria. After fitting the parameters of the models, validations were performed using a new dataset. Results, advantages and limitations of the four methods were compared. Some statistical forecasting indexes indicate that the ARIMA model showed more accurate estimation results, achieving a MAPE lower than 3 % and over 90% of the prediction data deviations lower than one kappa unit.Brazilian Society of Chemical Engineering2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301081Brazilian Journal of Chemical Engineering v.35 n.3 2018reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20180353s20160678info:eu-repo/semantics/openAccessCorreia,Flávio Marcelod'Angelo,José Vicente HallakAlmeida,Gustavo MatheusMingoti,Sueli Aparecidaeng2019-01-15T00:00:00Zoai:scielo:S0104-66322018000301081Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-01-15T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
title PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
spellingShingle PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
Correia,Flávio Marcelo
Kraft pulping
continuous digester
statistical methods
neural network applications
title_short PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
title_full PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
title_fullStr PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
title_full_unstemmed PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
title_sort PREDICTING KAPPA NUMBER IN A KRAFT PULP CONTINUOUS DIGESTER: A COMPARISON OF FORECASTING METHODS
author Correia,Flávio Marcelo
author_facet Correia,Flávio Marcelo
d'Angelo,José Vicente Hallak
Almeida,Gustavo Matheus
Mingoti,Sueli Aparecida
author_role author
author2 d'Angelo,José Vicente Hallak
Almeida,Gustavo Matheus
Mingoti,Sueli Aparecida
author2_role author
author
author
dc.contributor.author.fl_str_mv Correia,Flávio Marcelo
d'Angelo,José Vicente Hallak
Almeida,Gustavo Matheus
Mingoti,Sueli Aparecida
dc.subject.por.fl_str_mv Kraft pulping
continuous digester
statistical methods
neural network applications
topic Kraft pulping
continuous digester
statistical methods
neural network applications
description Abstract This paper discusses kappa number prediction models using Single Exponential Smoothing, Multiple Linear Regression Analysis, the Time Series Method of Box-Jenkins (ARIMA) and Artificial Neural Networks. Applying a database of an industrial eucalyptus Kraft pulp continuous digester, these four different methods were evaluated according to different statistical decision criteria. After fitting the parameters of the models, validations were performed using a new dataset. Results, advantages and limitations of the four methods were compared. Some statistical forecasting indexes indicate that the ARIMA model showed more accurate estimation results, achieving a MAPE lower than 3 % and over 90% of the prediction data deviations lower than one kappa unit.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301081
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301081
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20180353s20160678
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.35 n.3 2018
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213176247844864