Robust predictive control of a gasoline debutanizer column

Detalhes bibliográficos
Autor(a) principal: Almeida Neto,E.
Data de Publicação: 2000
Outros Autores: Rodrigues,M.A., Odloak,D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400061
Resumo: This paper studies the application of Model Predictive Control to moderately nonlinear processes. The system used in this work is an industrial gasoline debutanizer column. The paper presents two new formulations of MPC: MMPC (Multi-Model Predictive Controller) and RSMPC (Robust Stable MPC). The approach is based on the concepts of Linear Matrix Inequalities (LMI), which have been recently introduced in the MPC field. Model uncertainty is considered by assuming that the true process model belongs to a convex set (polytope) of possible plants. The controller has guaranteed stability when a Lyapunov type inequality constraint is included in the MPC problem. In the debutanizer column, several nonlinearities are present in the advanced control level when the manipulated inputs are the reflux flow and the reboiler heat duty. In most cases the controlled outputs are the contents of C5+ (pentane and heavier hydrocarbons) in the LPG (Liquefied Petroleum Gas) and the gasoline vapor pressure (P VR). In this case the QDMC algorithm which is usually applied to the debutanizer column has a poor performance and stability problems reflected in an oscillatory behavior of the process. The new approach considers several process models representing different operating conditions where linear models are identified. The results presented here show that the multimodel controller is capable of controlling the process in the entire operating window while the conventional MPC has a limited operating range.
id ABEQ-1_7eef4f8dd5917150f692fef4870f86f8
oai_identifier_str oai:scielo:S0104-66322000000400061
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Robust predictive control of a gasoline debutanizer columndebutanizer columnmodel predictive controlrobust controllinear matrix inequalitiesgasoline stabilizationThis paper studies the application of Model Predictive Control to moderately nonlinear processes. The system used in this work is an industrial gasoline debutanizer column. The paper presents two new formulations of MPC: MMPC (Multi-Model Predictive Controller) and RSMPC (Robust Stable MPC). The approach is based on the concepts of Linear Matrix Inequalities (LMI), which have been recently introduced in the MPC field. Model uncertainty is considered by assuming that the true process model belongs to a convex set (polytope) of possible plants. The controller has guaranteed stability when a Lyapunov type inequality constraint is included in the MPC problem. In the debutanizer column, several nonlinearities are present in the advanced control level when the manipulated inputs are the reflux flow and the reboiler heat duty. In most cases the controlled outputs are the contents of C5+ (pentane and heavier hydrocarbons) in the LPG (Liquefied Petroleum Gas) and the gasoline vapor pressure (P VR). In this case the QDMC algorithm which is usually applied to the debutanizer column has a poor performance and stability problems reflected in an oscillatory behavior of the process. The new approach considers several process models representing different operating conditions where linear models are identified. The results presented here show that the multimodel controller is capable of controlling the process in the entire operating window while the conventional MPC has a limited operating range.Brazilian Society of Chemical Engineering2000-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400061Brazilian Journal of Chemical Engineering v.17 n.4-7 2000reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322000000400061info:eu-repo/semantics/openAccessAlmeida Neto,E.Rodrigues,M.A.Odloak,D.eng2001-03-16T00:00:00Zoai:scielo:S0104-66322000000400061Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2001-03-16T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Robust predictive control of a gasoline debutanizer column
title Robust predictive control of a gasoline debutanizer column
spellingShingle Robust predictive control of a gasoline debutanizer column
Almeida Neto,E.
debutanizer column
model predictive control
robust control
linear matrix inequalities
gasoline stabilization
title_short Robust predictive control of a gasoline debutanizer column
title_full Robust predictive control of a gasoline debutanizer column
title_fullStr Robust predictive control of a gasoline debutanizer column
title_full_unstemmed Robust predictive control of a gasoline debutanizer column
title_sort Robust predictive control of a gasoline debutanizer column
author Almeida Neto,E.
author_facet Almeida Neto,E.
Rodrigues,M.A.
Odloak,D.
author_role author
author2 Rodrigues,M.A.
Odloak,D.
author2_role author
author
dc.contributor.author.fl_str_mv Almeida Neto,E.
Rodrigues,M.A.
Odloak,D.
dc.subject.por.fl_str_mv debutanizer column
model predictive control
robust control
linear matrix inequalities
gasoline stabilization
topic debutanizer column
model predictive control
robust control
linear matrix inequalities
gasoline stabilization
description This paper studies the application of Model Predictive Control to moderately nonlinear processes. The system used in this work is an industrial gasoline debutanizer column. The paper presents two new formulations of MPC: MMPC (Multi-Model Predictive Controller) and RSMPC (Robust Stable MPC). The approach is based on the concepts of Linear Matrix Inequalities (LMI), which have been recently introduced in the MPC field. Model uncertainty is considered by assuming that the true process model belongs to a convex set (polytope) of possible plants. The controller has guaranteed stability when a Lyapunov type inequality constraint is included in the MPC problem. In the debutanizer column, several nonlinearities are present in the advanced control level when the manipulated inputs are the reflux flow and the reboiler heat duty. In most cases the controlled outputs are the contents of C5+ (pentane and heavier hydrocarbons) in the LPG (Liquefied Petroleum Gas) and the gasoline vapor pressure (P VR). In this case the QDMC algorithm which is usually applied to the debutanizer column has a poor performance and stability problems reflected in an oscillatory behavior of the process. The new approach considers several process models representing different operating conditions where linear models are identified. The results presented here show that the multimodel controller is capable of controlling the process in the entire operating window while the conventional MPC has a limited operating range.
publishDate 2000
dc.date.none.fl_str_mv 2000-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400061
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400061
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322000000400061
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.17 n.4-7 2000
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213170804686848