EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300675 |
Resumo: | Abstract Crystallization in a Direct Contact Membrane Distillation (DCMD) process was studied both theoretically and experimentally. A mathematical model was proposed in order to predict the transmembrane flux in DCMD. The model fitted well experimental data for the system NaCl-H2O from undersaturated to supersaturated conditions in a specially designed crystallization setup at a bench scale. It was found that higher transmembrane fluxes induce higher temperature and concentration polarizations, as well as higher supersaturation in the vicinity of the solution-vapor interface. In this region, the supersaturation ratio largely exceeded the metastable limit for NaCl crystallization for the whole range of transmembrane fluxes of 0.37 to 1.54 kg/ (m2 h), implying that heterogeneous primary nucleation occurred close to such interface either in solution or on the membrane surface. Solids formed in solution accounted for 14 to 36% of the total solids, whereas solid formed on the membrane surface (fouling) was responsible for 6 to 19%. The remaining solids deposited on other surfaces such as in pumps and pipe fittings. It was also discovered that, by increasing the supersaturation ratio, heterogeneous nucleation in solution increased and on the membrane surface decreased. Heterogeneous nuclei in solution grew in size both by a molecular mechanism and by agglomeration. Single crystals were cubic shaped with well-formed edges and dominant size of about 40 µm whereas agglomerates were about 240 µm in size. The approach developed here may be applied to understanding crystallization phenomena in Membrane Distillation Crystallization (MDC) processes of any scale. |
id |
ABEQ-1_8f42cb5bc84bc56897bf80a4459f47bc |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322016000300675 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATIONDesalinationMembrane distillationModelingCrystallizationAbstract Crystallization in a Direct Contact Membrane Distillation (DCMD) process was studied both theoretically and experimentally. A mathematical model was proposed in order to predict the transmembrane flux in DCMD. The model fitted well experimental data for the system NaCl-H2O from undersaturated to supersaturated conditions in a specially designed crystallization setup at a bench scale. It was found that higher transmembrane fluxes induce higher temperature and concentration polarizations, as well as higher supersaturation in the vicinity of the solution-vapor interface. In this region, the supersaturation ratio largely exceeded the metastable limit for NaCl crystallization for the whole range of transmembrane fluxes of 0.37 to 1.54 kg/ (m2 h), implying that heterogeneous primary nucleation occurred close to such interface either in solution or on the membrane surface. Solids formed in solution accounted for 14 to 36% of the total solids, whereas solid formed on the membrane surface (fouling) was responsible for 6 to 19%. The remaining solids deposited on other surfaces such as in pumps and pipe fittings. It was also discovered that, by increasing the supersaturation ratio, heterogeneous nucleation in solution increased and on the membrane surface decreased. Heterogeneous nuclei in solution grew in size both by a molecular mechanism and by agglomeration. Single crystals were cubic shaped with well-formed edges and dominant size of about 40 µm whereas agglomerates were about 240 µm in size. The approach developed here may be applied to understanding crystallization phenomena in Membrane Distillation Crystallization (MDC) processes of any scale.Brazilian Society of Chemical Engineering2016-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300675Brazilian Journal of Chemical Engineering v.33 n.3 2016reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20160333s20150133info:eu-repo/semantics/openAccessNariyoshi,Y. N.Pantoja,C. E.Seckler,M. M.eng2016-11-18T00:00:00Zoai:scielo:S0104-66322016000300675Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2016-11-18T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION |
title |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION |
spellingShingle |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION Nariyoshi,Y. N. Desalination Membrane distillation Modeling Crystallization |
title_short |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION |
title_full |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION |
title_fullStr |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION |
title_full_unstemmed |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION |
title_sort |
EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION |
author |
Nariyoshi,Y. N. |
author_facet |
Nariyoshi,Y. N. Pantoja,C. E. Seckler,M. M. |
author_role |
author |
author2 |
Pantoja,C. E. Seckler,M. M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Nariyoshi,Y. N. Pantoja,C. E. Seckler,M. M. |
dc.subject.por.fl_str_mv |
Desalination Membrane distillation Modeling Crystallization |
topic |
Desalination Membrane distillation Modeling Crystallization |
description |
Abstract Crystallization in a Direct Contact Membrane Distillation (DCMD) process was studied both theoretically and experimentally. A mathematical model was proposed in order to predict the transmembrane flux in DCMD. The model fitted well experimental data for the system NaCl-H2O from undersaturated to supersaturated conditions in a specially designed crystallization setup at a bench scale. It was found that higher transmembrane fluxes induce higher temperature and concentration polarizations, as well as higher supersaturation in the vicinity of the solution-vapor interface. In this region, the supersaturation ratio largely exceeded the metastable limit for NaCl crystallization for the whole range of transmembrane fluxes of 0.37 to 1.54 kg/ (m2 h), implying that heterogeneous primary nucleation occurred close to such interface either in solution or on the membrane surface. Solids formed in solution accounted for 14 to 36% of the total solids, whereas solid formed on the membrane surface (fouling) was responsible for 6 to 19%. The remaining solids deposited on other surfaces such as in pumps and pipe fittings. It was also discovered that, by increasing the supersaturation ratio, heterogeneous nucleation in solution increased and on the membrane surface decreased. Heterogeneous nuclei in solution grew in size both by a molecular mechanism and by agglomeration. Single crystals were cubic shaped with well-formed edges and dominant size of about 40 µm whereas agglomerates were about 240 µm in size. The approach developed here may be applied to understanding crystallization phenomena in Membrane Distillation Crystallization (MDC) processes of any scale. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300675 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000300675 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0104-6632.20160333s20150133 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.33 n.3 2016 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213175121674240 |