Multivariable robust control of an integrated nuclear power reactor
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400013 |
Resumo: | The design of the main control system of the CAREM nuclear power plant is presented. This plant is an inherently safe low-power nuclear reactor with natural convection on the primary coolant circuit and is self-pressurized with a steam dome on the top of the pressure vessel (PV). It is an integrated reactor as the whole primary coolant circuit is within the PV. The primary circuit transports the heat to the secondary circuit through once-through steam generators (SG). There is a feedwater valve at the inlet of the SG and a turbine valve at the outlet of the SG. The manipulated variables are the aperture of these valves and the reactivity of the control rods. The control target is to regulate the primary and secondary pressures and to monitor steam flow reference ramps on a range of nominal flow from 100% to 40%. The requirements for the control system are robust stability, low-order simple controllers and transient/permanent error bounding. The controller design is based on a detailed RETRAN plant model, from which linear perturbed open-loop dynamic models at different powers are identified. Two low-order nominal models with their associated uncertainties are chosen for two different power ranges. Robust controllers with acceptable performances are designed for each range. Numerical optimization based on the loop-shaping method is used for the controller design. The designed controllers are implemented in the RETRAN model and tested in simulations achieving successful results. |
id |
ABEQ-1_91dc1206042dd99977dfcc0d6e74590b |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322002000400013 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Multivariable robust control of an integrated nuclear power reactormultivariable robust controlloop-shapingidentificationnuclear power plantsThe design of the main control system of the CAREM nuclear power plant is presented. This plant is an inherently safe low-power nuclear reactor with natural convection on the primary coolant circuit and is self-pressurized with a steam dome on the top of the pressure vessel (PV). It is an integrated reactor as the whole primary coolant circuit is within the PV. The primary circuit transports the heat to the secondary circuit through once-through steam generators (SG). There is a feedwater valve at the inlet of the SG and a turbine valve at the outlet of the SG. The manipulated variables are the aperture of these valves and the reactivity of the control rods. The control target is to regulate the primary and secondary pressures and to monitor steam flow reference ramps on a range of nominal flow from 100% to 40%. The requirements for the control system are robust stability, low-order simple controllers and transient/permanent error bounding. The controller design is based on a detailed RETRAN plant model, from which linear perturbed open-loop dynamic models at different powers are identified. Two low-order nominal models with their associated uncertainties are chosen for two different power ranges. Robust controllers with acceptable performances are designed for each range. Numerical optimization based on the loop-shaping method is used for the controller design. The designed controllers are implemented in the RETRAN model and tested in simulations achieving successful results.Brazilian Society of Chemical Engineering2002-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400013Brazilian Journal of Chemical Engineering v.19 n.4 2002reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322002000400013info:eu-repo/semantics/openAccessEtchepareborda,A.Flury,C.A.eng2003-01-20T00:00:00Zoai:scielo:S0104-66322002000400013Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2003-01-20T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Multivariable robust control of an integrated nuclear power reactor |
title |
Multivariable robust control of an integrated nuclear power reactor |
spellingShingle |
Multivariable robust control of an integrated nuclear power reactor Etchepareborda,A. multivariable robust control loop-shaping identification nuclear power plants |
title_short |
Multivariable robust control of an integrated nuclear power reactor |
title_full |
Multivariable robust control of an integrated nuclear power reactor |
title_fullStr |
Multivariable robust control of an integrated nuclear power reactor |
title_full_unstemmed |
Multivariable robust control of an integrated nuclear power reactor |
title_sort |
Multivariable robust control of an integrated nuclear power reactor |
author |
Etchepareborda,A. |
author_facet |
Etchepareborda,A. Flury,C.A. |
author_role |
author |
author2 |
Flury,C.A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Etchepareborda,A. Flury,C.A. |
dc.subject.por.fl_str_mv |
multivariable robust control loop-shaping identification nuclear power plants |
topic |
multivariable robust control loop-shaping identification nuclear power plants |
description |
The design of the main control system of the CAREM nuclear power plant is presented. This plant is an inherently safe low-power nuclear reactor with natural convection on the primary coolant circuit and is self-pressurized with a steam dome on the top of the pressure vessel (PV). It is an integrated reactor as the whole primary coolant circuit is within the PV. The primary circuit transports the heat to the secondary circuit through once-through steam generators (SG). There is a feedwater valve at the inlet of the SG and a turbine valve at the outlet of the SG. The manipulated variables are the aperture of these valves and the reactivity of the control rods. The control target is to regulate the primary and secondary pressures and to monitor steam flow reference ramps on a range of nominal flow from 100% to 40%. The requirements for the control system are robust stability, low-order simple controllers and transient/permanent error bounding. The controller design is based on a detailed RETRAN plant model, from which linear perturbed open-loop dynamic models at different powers are identified. Two low-order nominal models with their associated uncertainties are chosen for two different power ranges. Robust controllers with acceptable performances are designed for each range. Numerical optimization based on the loop-shaping method is used for the controller design. The designed controllers are implemented in the RETRAN model and tested in simulations achieving successful results. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400013 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322002000400013 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322002000400013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.19 n.4 2002 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213171183222784 |