Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model

Detalhes bibliográficos
Autor(a) principal: Haghighi,Maryam
Data de Publicação: 2010
Outros Autores: Kasiri,Norollah
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000100011
Resumo: Thermal performance of open-cell metal foam has been investigated under low Reynolds number by comparing the heat transfer coefficient and thermal conductivity for the flow through a packed channel of high porosity metal foam to that of an open channel. In the case of Al-Air at porosity 0.971, the ratio of heat transfer coefficients is estimated to be 18.5 when the thermal conductivity ratio of foam matrix to fluid conductivity is 130. This demonstrates that the useusing of foam in the structure of conventional air coolers increases effective thermal conductivity, heat transfer coefficient and thermal performance considerably. To overcome the drawbacks of previous models, a new model to describe the effective thermal conductivity of foam was developed. The model estimates effective thermal conductivity based on a non-isotropic tetrakaidecahedron unit-cell and is not confined only to isotropic cases as in previous models. Effective thermal conductivity is a function of foam geometrical characteristics, including ligament length (L), length of the sides of horizontal square faces (b), inclination angle that defines the orientation of the hexagonal faces with respect to the rise direction (θ), porosity, size, shape of metal lump at ligament intersections and heat transfer direction. Changing dimensionless foam ligament radius or height (d) from 0.1655 to 0.2126 for Reticulated vitreous foam -air (RVC-aAir) at θ=π/4 and dimensionless spherical node diameter (e) equal to 0.339, raises effective thermal conductivity by 31%. Moreover, increasing θ from π/4 to 0.4π for RVC-aAir at d=0.1655 and e=0.339 enhances effective thermal conductivity by 33%.
id ABEQ-1_9e413b729ddd09b1a9d1738fe8ff9fa0
oai_identifier_str oai:scielo:S0104-66322010000100011
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical modelMetal foamThermal performanceEffective thermal conductivityHeat transfer coefficientThermal performance of open-cell metal foam has been investigated under low Reynolds number by comparing the heat transfer coefficient and thermal conductivity for the flow through a packed channel of high porosity metal foam to that of an open channel. In the case of Al-Air at porosity 0.971, the ratio of heat transfer coefficients is estimated to be 18.5 when the thermal conductivity ratio of foam matrix to fluid conductivity is 130. This demonstrates that the useusing of foam in the structure of conventional air coolers increases effective thermal conductivity, heat transfer coefficient and thermal performance considerably. To overcome the drawbacks of previous models, a new model to describe the effective thermal conductivity of foam was developed. The model estimates effective thermal conductivity based on a non-isotropic tetrakaidecahedron unit-cell and is not confined only to isotropic cases as in previous models. Effective thermal conductivity is a function of foam geometrical characteristics, including ligament length (L), length of the sides of horizontal square faces (b), inclination angle that defines the orientation of the hexagonal faces with respect to the rise direction (θ), porosity, size, shape of metal lump at ligament intersections and heat transfer direction. Changing dimensionless foam ligament radius or height (d) from 0.1655 to 0.2126 for Reticulated vitreous foam -air (RVC-aAir) at θ=π/4 and dimensionless spherical node diameter (e) equal to 0.339, raises effective thermal conductivity by 31%. Moreover, increasing θ from π/4 to 0.4π for RVC-aAir at d=0.1655 and e=0.339 enhances effective thermal conductivity by 33%.Brazilian Society of Chemical Engineering2010-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000100011Brazilian Journal of Chemical Engineering v.27 n.1 2010reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322010000100011info:eu-repo/semantics/openAccessHaghighi,MaryamKasiri,Norollaheng2010-04-14T00:00:00Zoai:scielo:S0104-66322010000100011Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2010-04-14T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model
title Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model
spellingShingle Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model
Haghighi,Maryam
Metal foam
Thermal performance
Effective thermal conductivity
Heat transfer coefficient
title_short Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model
title_full Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model
title_fullStr Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model
title_full_unstemmed Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model
title_sort Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model
author Haghighi,Maryam
author_facet Haghighi,Maryam
Kasiri,Norollah
author_role author
author2 Kasiri,Norollah
author2_role author
dc.contributor.author.fl_str_mv Haghighi,Maryam
Kasiri,Norollah
dc.subject.por.fl_str_mv Metal foam
Thermal performance
Effective thermal conductivity
Heat transfer coefficient
topic Metal foam
Thermal performance
Effective thermal conductivity
Heat transfer coefficient
description Thermal performance of open-cell metal foam has been investigated under low Reynolds number by comparing the heat transfer coefficient and thermal conductivity for the flow through a packed channel of high porosity metal foam to that of an open channel. In the case of Al-Air at porosity 0.971, the ratio of heat transfer coefficients is estimated to be 18.5 when the thermal conductivity ratio of foam matrix to fluid conductivity is 130. This demonstrates that the useusing of foam in the structure of conventional air coolers increases effective thermal conductivity, heat transfer coefficient and thermal performance considerably. To overcome the drawbacks of previous models, a new model to describe the effective thermal conductivity of foam was developed. The model estimates effective thermal conductivity based on a non-isotropic tetrakaidecahedron unit-cell and is not confined only to isotropic cases as in previous models. Effective thermal conductivity is a function of foam geometrical characteristics, including ligament length (L), length of the sides of horizontal square faces (b), inclination angle that defines the orientation of the hexagonal faces with respect to the rise direction (θ), porosity, size, shape of metal lump at ligament intersections and heat transfer direction. Changing dimensionless foam ligament radius or height (d) from 0.1655 to 0.2126 for Reticulated vitreous foam -air (RVC-aAir) at θ=π/4 and dimensionless spherical node diameter (e) equal to 0.339, raises effective thermal conductivity by 31%. Moreover, increasing θ from π/4 to 0.4π for RVC-aAir at d=0.1655 and e=0.339 enhances effective thermal conductivity by 33%.
publishDate 2010
dc.date.none.fl_str_mv 2010-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000100011
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000100011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322010000100011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.27 n.1 2010
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213173093728256