Natural convection heat transfer in partially open enclosures containing an internal local heat source

Detalhes bibliográficos
Autor(a) principal: Mariani,V. C.
Data de Publicação: 2007
Outros Autores: Coelho,L. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000300007
Resumo: A numerical study was conducted to investigate steady heat transfer and flow phenomena of natural convection of air in enclosures, with three aspect ratios (H/W = 1, 2, and 4), within which there is a local heat source on the bottom wall at three different positions, Wh. This heat source occupies 1% of the total volume of the enclosure. The vertical walls in the enclosures are insulated and there is an opening on the right wall. The natural convection is influenced by the difference in temperature between the left and right walls, represented by a Rayleigh number (Ra e), and by local heat source, represented by a Rayleigh number (Ra i). Numerical simulations were performed for several values of the Rayleigh number ranging between 10³ and 10(6), while the intensity of the two effects - the difference in temperature on the vertical walls and the local heat source - was evaluated based on the Ra i/Ra e ratio in the range between 0 and 2500. The analysis proceeds by observing variations in the streamlines and isotherms with respect to the different Ra e, R ratios, aspect ratios, of the radius and positions of the local heat source. The average Nusselt numbers on the hot and cold walls are influenced by different values of the parameters R, Ra e, Wh, and H/W. Results show the presence of different flow patterns in the enclosures studied. Thus, the flow and heat transfer can be controlled by external heating, and local heat source.
id ABEQ-1_ac6ef4e7ad1b8dae7fe75ab5bfde34fd
oai_identifier_str oai:scielo:S0104-66322007000300007
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Natural convection heat transfer in partially open enclosures containing an internal local heat sourceNatural convectionAverage Nusselt numberRectangular enclosuresNumerical studyheat sourceA numerical study was conducted to investigate steady heat transfer and flow phenomena of natural convection of air in enclosures, with three aspect ratios (H/W = 1, 2, and 4), within which there is a local heat source on the bottom wall at three different positions, Wh. This heat source occupies 1% of the total volume of the enclosure. The vertical walls in the enclosures are insulated and there is an opening on the right wall. The natural convection is influenced by the difference in temperature between the left and right walls, represented by a Rayleigh number (Ra e), and by local heat source, represented by a Rayleigh number (Ra i). Numerical simulations were performed for several values of the Rayleigh number ranging between 10³ and 10(6), while the intensity of the two effects - the difference in temperature on the vertical walls and the local heat source - was evaluated based on the Ra i/Ra e ratio in the range between 0 and 2500. The analysis proceeds by observing variations in the streamlines and isotherms with respect to the different Ra e, R ratios, aspect ratios, of the radius and positions of the local heat source. The average Nusselt numbers on the hot and cold walls are influenced by different values of the parameters R, Ra e, Wh, and H/W. Results show the presence of different flow patterns in the enclosures studied. Thus, the flow and heat transfer can be controlled by external heating, and local heat source.Brazilian Society of Chemical Engineering2007-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000300007Brazilian Journal of Chemical Engineering v.24 n.3 2007reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322007000300007info:eu-repo/semantics/openAccessMariani,V. C.Coelho,L. S.eng2007-11-23T00:00:00Zoai:scielo:S0104-66322007000300007Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2007-11-23T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Natural convection heat transfer in partially open enclosures containing an internal local heat source
title Natural convection heat transfer in partially open enclosures containing an internal local heat source
spellingShingle Natural convection heat transfer in partially open enclosures containing an internal local heat source
Mariani,V. C.
Natural convection
Average Nusselt number
Rectangular enclosures
Numerical study
heat source
title_short Natural convection heat transfer in partially open enclosures containing an internal local heat source
title_full Natural convection heat transfer in partially open enclosures containing an internal local heat source
title_fullStr Natural convection heat transfer in partially open enclosures containing an internal local heat source
title_full_unstemmed Natural convection heat transfer in partially open enclosures containing an internal local heat source
title_sort Natural convection heat transfer in partially open enclosures containing an internal local heat source
author Mariani,V. C.
author_facet Mariani,V. C.
Coelho,L. S.
author_role author
author2 Coelho,L. S.
author2_role author
dc.contributor.author.fl_str_mv Mariani,V. C.
Coelho,L. S.
dc.subject.por.fl_str_mv Natural convection
Average Nusselt number
Rectangular enclosures
Numerical study
heat source
topic Natural convection
Average Nusselt number
Rectangular enclosures
Numerical study
heat source
description A numerical study was conducted to investigate steady heat transfer and flow phenomena of natural convection of air in enclosures, with three aspect ratios (H/W = 1, 2, and 4), within which there is a local heat source on the bottom wall at three different positions, Wh. This heat source occupies 1% of the total volume of the enclosure. The vertical walls in the enclosures are insulated and there is an opening on the right wall. The natural convection is influenced by the difference in temperature between the left and right walls, represented by a Rayleigh number (Ra e), and by local heat source, represented by a Rayleigh number (Ra i). Numerical simulations were performed for several values of the Rayleigh number ranging between 10³ and 10(6), while the intensity of the two effects - the difference in temperature on the vertical walls and the local heat source - was evaluated based on the Ra i/Ra e ratio in the range between 0 and 2500. The analysis proceeds by observing variations in the streamlines and isotherms with respect to the different Ra e, R ratios, aspect ratios, of the radius and positions of the local heat source. The average Nusselt numbers on the hot and cold walls are influenced by different values of the parameters R, Ra e, Wh, and H/W. Results show the presence of different flow patterns in the enclosures studied. Thus, the flow and heat transfer can be controlled by external heating, and local heat source.
publishDate 2007
dc.date.none.fl_str_mv 2007-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000300007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000300007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322007000300007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.24 n.3 2007
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213172315684864