Description of consolidation forces on nanometric powders

Detalhes bibliográficos
Autor(a) principal: Turki,D.
Data de Publicação: 2010
Outros Autores: Fatah,N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000400007
Resumo: The experiments and analyses performed included measurements of the physical properties of TiO2 powder such as the particle size, density, and consolidation. Experiments with nanometric TiO2powder of 204 nm average diameter show that, during consolidation, the adhesion of particles under normal stress is principally due to the van der Waals force for particle radii less than 300nm and the application of external force has no effect on the cohesion of the primary particles within this range; for particle radii around 300nm to 1.0µm the cohesion of the powder system is due to plastic deformation and the application of external force change the cohesion force to a plastic deformation between the agglomerates formed under these forces. This can be observed in the arrangement of the primary particles into dispersed agglomerates with sizes greater than the individual particles. The results obtained with the nanometric TiO2 powders show a more complex behavior than the micronic powders. This behavior is related to the structure of the nanometric particles in the packed bed; the evolution of this structure is made up of individualized and spherical agglomerate shapes. It has been experimentally observed that the powder structure is not perturbed by stresses of low intensities. A development of the different forces involved in interparticle contacts is outlined. The description of these forces involved in particle cohesion will help to understand the powder cohesion under consolidation.
id ABEQ-1_af4acca49a8be76c7191d038645a130c
oai_identifier_str oai:scielo:S0104-66322010000400007
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Description of consolidation forces on nanometric powdersConsolidationInterparticle forcesNanometric powdervan der Waals forcesThe experiments and analyses performed included measurements of the physical properties of TiO2 powder such as the particle size, density, and consolidation. Experiments with nanometric TiO2powder of 204 nm average diameter show that, during consolidation, the adhesion of particles under normal stress is principally due to the van der Waals force for particle radii less than 300nm and the application of external force has no effect on the cohesion of the primary particles within this range; for particle radii around 300nm to 1.0µm the cohesion of the powder system is due to plastic deformation and the application of external force change the cohesion force to a plastic deformation between the agglomerates formed under these forces. This can be observed in the arrangement of the primary particles into dispersed agglomerates with sizes greater than the individual particles. The results obtained with the nanometric TiO2 powders show a more complex behavior than the micronic powders. This behavior is related to the structure of the nanometric particles in the packed bed; the evolution of this structure is made up of individualized and spherical agglomerate shapes. It has been experimentally observed that the powder structure is not perturbed by stresses of low intensities. A development of the different forces involved in interparticle contacts is outlined. The description of these forces involved in particle cohesion will help to understand the powder cohesion under consolidation.Brazilian Society of Chemical Engineering2010-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000400007Brazilian Journal of Chemical Engineering v.27 n.4 2010reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322010000400007info:eu-repo/semantics/openAccessTurki,D.Fatah,N.eng2011-01-04T00:00:00Zoai:scielo:S0104-66322010000400007Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2011-01-04T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Description of consolidation forces on nanometric powders
title Description of consolidation forces on nanometric powders
spellingShingle Description of consolidation forces on nanometric powders
Turki,D.
Consolidation
Interparticle forces
Nanometric powder
van der Waals forces
title_short Description of consolidation forces on nanometric powders
title_full Description of consolidation forces on nanometric powders
title_fullStr Description of consolidation forces on nanometric powders
title_full_unstemmed Description of consolidation forces on nanometric powders
title_sort Description of consolidation forces on nanometric powders
author Turki,D.
author_facet Turki,D.
Fatah,N.
author_role author
author2 Fatah,N.
author2_role author
dc.contributor.author.fl_str_mv Turki,D.
Fatah,N.
dc.subject.por.fl_str_mv Consolidation
Interparticle forces
Nanometric powder
van der Waals forces
topic Consolidation
Interparticle forces
Nanometric powder
van der Waals forces
description The experiments and analyses performed included measurements of the physical properties of TiO2 powder such as the particle size, density, and consolidation. Experiments with nanometric TiO2powder of 204 nm average diameter show that, during consolidation, the adhesion of particles under normal stress is principally due to the van der Waals force for particle radii less than 300nm and the application of external force has no effect on the cohesion of the primary particles within this range; for particle radii around 300nm to 1.0µm the cohesion of the powder system is due to plastic deformation and the application of external force change the cohesion force to a plastic deformation between the agglomerates formed under these forces. This can be observed in the arrangement of the primary particles into dispersed agglomerates with sizes greater than the individual particles. The results obtained with the nanometric TiO2 powders show a more complex behavior than the micronic powders. This behavior is related to the structure of the nanometric particles in the packed bed; the evolution of this structure is made up of individualized and spherical agglomerate shapes. It has been experimentally observed that the powder structure is not perturbed by stresses of low intensities. A development of the different forces involved in interparticle contacts is outlined. The description of these forces involved in particle cohesion will help to understand the powder cohesion under consolidation.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000400007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322010000400007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322010000400007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.27 n.4 2010
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213173149302784