AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length

Detalhes bibliográficos
Autor(a) principal: Santos,D. A.
Data de Publicação: 2014
Outros Autores: Rodrigues,J. A. D., Ratusznei,S. M., Zaiat,M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000300009
Resumo: An anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass and operating with recirculation of the liquid phase (total liquid volume 4.5 L; treated volume per cycle 1.9 L) was used to treat sucrose-based wastewater at 30 ºC and produce biohydrogen. The influence of applied volumetric organic load was studied by varying the influent concentration at 3600 and 5400 mgCOD.L-1 and using cycle lengths of 4, 3 and 2 hours, obtaining in this manner volumetric organic loads of 9, 12, 13.5, 18 and 27 gCOD.L-1.d-1. Different performance indicators were used: productivity and yield of biohydrogen per applied and removed load, reactor stability and efficiency based on the applied and removed organic loads, both in terms of organic matter (measured as COD) and carbohydrate (sucrose). The results revealed system stability (32-37% of H2 in biogas) during biohydrogen production, as well as substrate consumption (12-19% COD; 97-99% sucrose). Conversion efficiencies decreased when the influent concentration was increased (at constant cycle length) and when cycle lengths were reduced (at constant influent concentrations). The best yield was 4.16 mol-H2.kg-SUC-1 (sucrose load) at 9 gCOD.L-1.d-1 (3600 mgCOD.L-1 and 4 h) with H2 content in the biogas of 36% (64% CO2 and 0% CH4). However, the best specific molar productivity of hydrogen was 8.5 molH2.kgTVS-1.d-1 (32% H2; 68% CO2; 0% CH4), at 18 gCOD.L-1.d-1 (5400 mgCOD.L-1 and 3 h), indicating that the best productivity tends to occur at higher organic loads, as this parameter involves the "biochemical generation" of biogas, whereas the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves "biochemical consumption" of the substrate. The most significant metabolites were ethanol, acetic acid and butyric acid. Microbiological analyses revealed that the biomass contained bacilli and endospore filaments and showed no significant variations in morphology between different experimental conditions.
id ABEQ-1_b0052e91a95d08ff8b3c42bf5b6f628a
oai_identifier_str oai:scielo:S0104-66322014000300009
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle lengthAnSBBRBiohydrogenLiquid circulationOrganic loadingInfluent concentrationCycle lengthAn anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass and operating with recirculation of the liquid phase (total liquid volume 4.5 L; treated volume per cycle 1.9 L) was used to treat sucrose-based wastewater at 30 ºC and produce biohydrogen. The influence of applied volumetric organic load was studied by varying the influent concentration at 3600 and 5400 mgCOD.L-1 and using cycle lengths of 4, 3 and 2 hours, obtaining in this manner volumetric organic loads of 9, 12, 13.5, 18 and 27 gCOD.L-1.d-1. Different performance indicators were used: productivity and yield of biohydrogen per applied and removed load, reactor stability and efficiency based on the applied and removed organic loads, both in terms of organic matter (measured as COD) and carbohydrate (sucrose). The results revealed system stability (32-37% of H2 in biogas) during biohydrogen production, as well as substrate consumption (12-19% COD; 97-99% sucrose). Conversion efficiencies decreased when the influent concentration was increased (at constant cycle length) and when cycle lengths were reduced (at constant influent concentrations). The best yield was 4.16 mol-H2.kg-SUC-1 (sucrose load) at 9 gCOD.L-1.d-1 (3600 mgCOD.L-1 and 4 h) with H2 content in the biogas of 36% (64% CO2 and 0% CH4). However, the best specific molar productivity of hydrogen was 8.5 molH2.kgTVS-1.d-1 (32% H2; 68% CO2; 0% CH4), at 18 gCOD.L-1.d-1 (5400 mgCOD.L-1 and 3 h), indicating that the best productivity tends to occur at higher organic loads, as this parameter involves the "biochemical generation" of biogas, whereas the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves "biochemical consumption" of the substrate. The most significant metabolites were ethanol, acetic acid and butyric acid. Microbiological analyses revealed that the biomass contained bacilli and endospore filaments and showed no significant variations in morphology between different experimental conditions.Brazilian Society of Chemical Engineering2014-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000300009Brazilian Journal of Chemical Engineering v.31 n.3 2014reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20140313s00002694info:eu-repo/semantics/openAccessSantos,D. A.Rodrigues,J. A. D.Ratusznei,S. M.Zaiat,M.eng2014-09-17T00:00:00Zoai:scielo:S0104-66322014000300009Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2014-09-17T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length
title AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length
spellingShingle AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length
Santos,D. A.
AnSBBR
Biohydrogen
Liquid circulation
Organic loading
Influent concentration
Cycle length
title_short AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length
title_full AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length
title_fullStr AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length
title_full_unstemmed AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length
title_sort AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length
author Santos,D. A.
author_facet Santos,D. A.
Rodrigues,J. A. D.
Ratusznei,S. M.
Zaiat,M.
author_role author
author2 Rodrigues,J. A. D.
Ratusznei,S. M.
Zaiat,M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Santos,D. A.
Rodrigues,J. A. D.
Ratusznei,S. M.
Zaiat,M.
dc.subject.por.fl_str_mv AnSBBR
Biohydrogen
Liquid circulation
Organic loading
Influent concentration
Cycle length
topic AnSBBR
Biohydrogen
Liquid circulation
Organic loading
Influent concentration
Cycle length
description An anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass and operating with recirculation of the liquid phase (total liquid volume 4.5 L; treated volume per cycle 1.9 L) was used to treat sucrose-based wastewater at 30 ºC and produce biohydrogen. The influence of applied volumetric organic load was studied by varying the influent concentration at 3600 and 5400 mgCOD.L-1 and using cycle lengths of 4, 3 and 2 hours, obtaining in this manner volumetric organic loads of 9, 12, 13.5, 18 and 27 gCOD.L-1.d-1. Different performance indicators were used: productivity and yield of biohydrogen per applied and removed load, reactor stability and efficiency based on the applied and removed organic loads, both in terms of organic matter (measured as COD) and carbohydrate (sucrose). The results revealed system stability (32-37% of H2 in biogas) during biohydrogen production, as well as substrate consumption (12-19% COD; 97-99% sucrose). Conversion efficiencies decreased when the influent concentration was increased (at constant cycle length) and when cycle lengths were reduced (at constant influent concentrations). The best yield was 4.16 mol-H2.kg-SUC-1 (sucrose load) at 9 gCOD.L-1.d-1 (3600 mgCOD.L-1 and 4 h) with H2 content in the biogas of 36% (64% CO2 and 0% CH4). However, the best specific molar productivity of hydrogen was 8.5 molH2.kgTVS-1.d-1 (32% H2; 68% CO2; 0% CH4), at 18 gCOD.L-1.d-1 (5400 mgCOD.L-1 and 3 h), indicating that the best productivity tends to occur at higher organic loads, as this parameter involves the "biochemical generation" of biogas, whereas the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves "biochemical consumption" of the substrate. The most significant metabolites were ethanol, acetic acid and butyric acid. Microbiological analyses revealed that the biomass contained bacilli and endospore filaments and showed no significant variations in morphology between different experimental conditions.
publishDate 2014
dc.date.none.fl_str_mv 2014-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000300009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000300009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20140313s00002694
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.31 n.3 2014
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213174329999360