PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR

Detalhes bibliográficos
Autor(a) principal: Zhang,Jianghong
Data de Publicação: 2018
Outros Autores: Huang,Bing, Chen,Liang, Du,Jiayao, Li,Wei, Luo,Zhuanxi
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301039
Resumo: Abstract The pyrolysis kinetics of hulless barley straw at different heating rates of 5,10, 15, 20 and 30 ºC/min were investigated via thermogravimetry, and the activation energy distribution E and pre-exponential factor k0 were calculated using the Distributed Activation Energy Model (DAEM) from thermogravimetric analysis (TGA) curves, and characterizations of pyrolysis product of biochar were analyzed by techniques of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The pyrolysis process consisted mainly of the dehydration stage (50-150 ºC), the active pyrolysis stage (200-400 ºC) and the passive pyrolysis stage (400-800 ºC). The E ranged from 73.45 to 214.11 kJ/mol within the conversion rate range of 0.10-0.55, and changed from 214.11 to 141.55 kJ/mol within the conversion rate range of 0.55-0.90, and the average value of E was 172.23 kJ/mol. The values of k0 changed greatly with E values at different mass conversion. The wide E and k0 distributions obtained from the kinetic analysis are attributed to the complex chemical reactions of pyrolysis. The structure of biochar was degraded or ruptured due to the increase in temperature. The XRD analysis confirmed that the biochar was amorphous, dominated by disordered graphitic crystallites.
id ABEQ-1_c53f18b027a4b28d837252f1c401ba67
oai_identifier_str oai:scielo:S0104-66322018000301039
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHARHulless barley strawThermogravimetric analysisDistributed activation energy modelPyrolysis kineticsAbstract The pyrolysis kinetics of hulless barley straw at different heating rates of 5,10, 15, 20 and 30 ºC/min were investigated via thermogravimetry, and the activation energy distribution E and pre-exponential factor k0 were calculated using the Distributed Activation Energy Model (DAEM) from thermogravimetric analysis (TGA) curves, and characterizations of pyrolysis product of biochar were analyzed by techniques of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The pyrolysis process consisted mainly of the dehydration stage (50-150 ºC), the active pyrolysis stage (200-400 ºC) and the passive pyrolysis stage (400-800 ºC). The E ranged from 73.45 to 214.11 kJ/mol within the conversion rate range of 0.10-0.55, and changed from 214.11 to 141.55 kJ/mol within the conversion rate range of 0.55-0.90, and the average value of E was 172.23 kJ/mol. The values of k0 changed greatly with E values at different mass conversion. The wide E and k0 distributions obtained from the kinetic analysis are attributed to the complex chemical reactions of pyrolysis. The structure of biochar was degraded or ruptured due to the increase in temperature. The XRD analysis confirmed that the biochar was amorphous, dominated by disordered graphitic crystallites.Brazilian Society of Chemical Engineering2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301039Brazilian Journal of Chemical Engineering v.35 n.3 2018reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20180353s20170382info:eu-repo/semantics/openAccessZhang,JianghongHuang,BingChen,LiangDu,JiayaoLi,WeiLuo,Zhuanxieng2019-01-15T00:00:00Zoai:scielo:S0104-66322018000301039Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-01-15T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR
title PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR
spellingShingle PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR
Zhang,Jianghong
Hulless barley straw
Thermogravimetric analysis
Distributed activation energy model
Pyrolysis kinetics
title_short PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR
title_full PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR
title_fullStr PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR
title_full_unstemmed PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR
title_sort PYROLYSIS KINETICS OF HULLESS BARLEY STRAW USING THE DISTRIBUTED ACTIVATION ENERGY MODEL (DAEM) BY THE TG/DTA TECHNIQUE AND SEM/XRD CHARACTERIZATIONS FOR HULLESS BARLEY STRAW DERIVED BIOCHAR
author Zhang,Jianghong
author_facet Zhang,Jianghong
Huang,Bing
Chen,Liang
Du,Jiayao
Li,Wei
Luo,Zhuanxi
author_role author
author2 Huang,Bing
Chen,Liang
Du,Jiayao
Li,Wei
Luo,Zhuanxi
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Zhang,Jianghong
Huang,Bing
Chen,Liang
Du,Jiayao
Li,Wei
Luo,Zhuanxi
dc.subject.por.fl_str_mv Hulless barley straw
Thermogravimetric analysis
Distributed activation energy model
Pyrolysis kinetics
topic Hulless barley straw
Thermogravimetric analysis
Distributed activation energy model
Pyrolysis kinetics
description Abstract The pyrolysis kinetics of hulless barley straw at different heating rates of 5,10, 15, 20 and 30 ºC/min were investigated via thermogravimetry, and the activation energy distribution E and pre-exponential factor k0 were calculated using the Distributed Activation Energy Model (DAEM) from thermogravimetric analysis (TGA) curves, and characterizations of pyrolysis product of biochar were analyzed by techniques of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The pyrolysis process consisted mainly of the dehydration stage (50-150 ºC), the active pyrolysis stage (200-400 ºC) and the passive pyrolysis stage (400-800 ºC). The E ranged from 73.45 to 214.11 kJ/mol within the conversion rate range of 0.10-0.55, and changed from 214.11 to 141.55 kJ/mol within the conversion rate range of 0.55-0.90, and the average value of E was 172.23 kJ/mol. The values of k0 changed greatly with E values at different mass conversion. The wide E and k0 distributions obtained from the kinetic analysis are attributed to the complex chemical reactions of pyrolysis. The structure of biochar was degraded or ruptured due to the increase in temperature. The XRD analysis confirmed that the biochar was amorphous, dominated by disordered graphitic crystallites.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301039
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000301039
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20180353s20170382
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.35 n.3 2018
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213176242601984