SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100335 |
Resumo: | ABSTRACT This paper presents a numerical analysis of entropy generation in a two-dimensional rectangular channel where the inlet flow undergoes thermal decomposition resulting from a chemical reaction. The model considered viscosity and thermal conductivity to be dependent of temperature. Irreversibility due to mass transport was included in the entropy generation analysis. Relevant applications of this study are possible for the design of power generation systems and reactors. The effects of the Reynolds number, Schmidt number, and length of the heat source on thermal fluid dynamics, mass transfer, and irreversibility were also investigated. It was found that thermal decomposition increases at: a) low Reynolds numbers, b) low Schmidt numbers, and c) increased length of heat source. Additionally, overall entropy generation increased when Reynolds number and length of heat source were increased, although in all cases, overall irreversibility attains a minimum value at a specific Schmidt number. |
id |
ABEQ-1_c542808b7b585689df7cd5c4013849b0 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322019000100335 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSISEntropy generationThermal decompositionFinite elementChemical reactionABSTRACT This paper presents a numerical analysis of entropy generation in a two-dimensional rectangular channel where the inlet flow undergoes thermal decomposition resulting from a chemical reaction. The model considered viscosity and thermal conductivity to be dependent of temperature. Irreversibility due to mass transport was included in the entropy generation analysis. Relevant applications of this study are possible for the design of power generation systems and reactors. The effects of the Reynolds number, Schmidt number, and length of the heat source on thermal fluid dynamics, mass transfer, and irreversibility were also investigated. It was found that thermal decomposition increases at: a) low Reynolds numbers, b) low Schmidt numbers, and c) increased length of heat source. Additionally, overall entropy generation increased when Reynolds number and length of heat source were increased, although in all cases, overall irreversibility attains a minimum value at a specific Schmidt number.Brazilian Society of Chemical Engineering2019-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100335Brazilian Journal of Chemical Engineering v.36 n.1 2019reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20190361s20170375info:eu-repo/semantics/openAccessOvando-Chacon,Guillermo E.Ovando-Chacon,Sandy L.Prince-Avelino,Juan C.Rodriguez-Leon,AbelardoGarcia-Arellano,Cesareng2019-07-10T00:00:00Zoai:scielo:S0104-66322019000100335Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-07-10T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS |
title |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS |
spellingShingle |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS Ovando-Chacon,Guillermo E. Entropy generation Thermal decomposition Finite element Chemical reaction |
title_short |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS |
title_full |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS |
title_fullStr |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS |
title_full_unstemmed |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS |
title_sort |
SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS |
author |
Ovando-Chacon,Guillermo E. |
author_facet |
Ovando-Chacon,Guillermo E. Ovando-Chacon,Sandy L. Prince-Avelino,Juan C. Rodriguez-Leon,Abelardo Garcia-Arellano,Cesar |
author_role |
author |
author2 |
Ovando-Chacon,Sandy L. Prince-Avelino,Juan C. Rodriguez-Leon,Abelardo Garcia-Arellano,Cesar |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ovando-Chacon,Guillermo E. Ovando-Chacon,Sandy L. Prince-Avelino,Juan C. Rodriguez-Leon,Abelardo Garcia-Arellano,Cesar |
dc.subject.por.fl_str_mv |
Entropy generation Thermal decomposition Finite element Chemical reaction |
topic |
Entropy generation Thermal decomposition Finite element Chemical reaction |
description |
ABSTRACT This paper presents a numerical analysis of entropy generation in a two-dimensional rectangular channel where the inlet flow undergoes thermal decomposition resulting from a chemical reaction. The model considered viscosity and thermal conductivity to be dependent of temperature. Irreversibility due to mass transport was included in the entropy generation analysis. Relevant applications of this study are possible for the design of power generation systems and reactors. The effects of the Reynolds number, Schmidt number, and length of the heat source on thermal fluid dynamics, mass transfer, and irreversibility were also investigated. It was found that thermal decomposition increases at: a) low Reynolds numbers, b) low Schmidt numbers, and c) increased length of heat source. Additionally, overall entropy generation increased when Reynolds number and length of heat source were increased, although in all cases, overall irreversibility attains a minimum value at a specific Schmidt number. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100335 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100335 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0104-6632.20190361s20170375 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.36 n.1 2019 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213176342216704 |