SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS

Detalhes bibliográficos
Autor(a) principal: Ovando-Chacon,Guillermo E.
Data de Publicação: 2019
Outros Autores: Ovando-Chacon,Sandy L., Prince-Avelino,Juan C., Rodriguez-Leon,Abelardo, Garcia-Arellano,Cesar
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100335
Resumo: ABSTRACT This paper presents a numerical analysis of entropy generation in a two-dimensional rectangular channel where the inlet flow undergoes thermal decomposition resulting from a chemical reaction. The model considered viscosity and thermal conductivity to be dependent of temperature. Irreversibility due to mass transport was included in the entropy generation analysis. Relevant applications of this study are possible for the design of power generation systems and reactors. The effects of the Reynolds number, Schmidt number, and length of the heat source on thermal fluid dynamics, mass transfer, and irreversibility were also investigated. It was found that thermal decomposition increases at: a) low Reynolds numbers, b) low Schmidt numbers, and c) increased length of heat source. Additionally, overall entropy generation increased when Reynolds number and length of heat source were increased, although in all cases, overall irreversibility attains a minimum value at a specific Schmidt number.
id ABEQ-1_c542808b7b585689df7cd5c4013849b0
oai_identifier_str oai:scielo:S0104-66322019000100335
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSISEntropy generationThermal decompositionFinite elementChemical reactionABSTRACT This paper presents a numerical analysis of entropy generation in a two-dimensional rectangular channel where the inlet flow undergoes thermal decomposition resulting from a chemical reaction. The model considered viscosity and thermal conductivity to be dependent of temperature. Irreversibility due to mass transport was included in the entropy generation analysis. Relevant applications of this study are possible for the design of power generation systems and reactors. The effects of the Reynolds number, Schmidt number, and length of the heat source on thermal fluid dynamics, mass transfer, and irreversibility were also investigated. It was found that thermal decomposition increases at: a) low Reynolds numbers, b) low Schmidt numbers, and c) increased length of heat source. Additionally, overall entropy generation increased when Reynolds number and length of heat source were increased, although in all cases, overall irreversibility attains a minimum value at a specific Schmidt number.Brazilian Society of Chemical Engineering2019-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100335Brazilian Journal of Chemical Engineering v.36 n.1 2019reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20190361s20170375info:eu-repo/semantics/openAccessOvando-Chacon,Guillermo E.Ovando-Chacon,Sandy L.Prince-Avelino,Juan C.Rodriguez-Leon,AbelardoGarcia-Arellano,Cesareng2019-07-10T00:00:00Zoai:scielo:S0104-66322019000100335Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-07-10T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
title SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
spellingShingle SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
Ovando-Chacon,Guillermo E.
Entropy generation
Thermal decomposition
Finite element
Chemical reaction
title_short SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
title_full SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
title_fullStr SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
title_full_unstemmed SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
title_sort SIMULATION OF THERMAL DECOMPOSITION IN AN OPEN CAVITY: ENTROPY ANALYSIS
author Ovando-Chacon,Guillermo E.
author_facet Ovando-Chacon,Guillermo E.
Ovando-Chacon,Sandy L.
Prince-Avelino,Juan C.
Rodriguez-Leon,Abelardo
Garcia-Arellano,Cesar
author_role author
author2 Ovando-Chacon,Sandy L.
Prince-Avelino,Juan C.
Rodriguez-Leon,Abelardo
Garcia-Arellano,Cesar
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ovando-Chacon,Guillermo E.
Ovando-Chacon,Sandy L.
Prince-Avelino,Juan C.
Rodriguez-Leon,Abelardo
Garcia-Arellano,Cesar
dc.subject.por.fl_str_mv Entropy generation
Thermal decomposition
Finite element
Chemical reaction
topic Entropy generation
Thermal decomposition
Finite element
Chemical reaction
description ABSTRACT This paper presents a numerical analysis of entropy generation in a two-dimensional rectangular channel where the inlet flow undergoes thermal decomposition resulting from a chemical reaction. The model considered viscosity and thermal conductivity to be dependent of temperature. Irreversibility due to mass transport was included in the entropy generation analysis. Relevant applications of this study are possible for the design of power generation systems and reactors. The effects of the Reynolds number, Schmidt number, and length of the heat source on thermal fluid dynamics, mass transfer, and irreversibility were also investigated. It was found that thermal decomposition increases at: a) low Reynolds numbers, b) low Schmidt numbers, and c) increased length of heat source. Additionally, overall entropy generation increased when Reynolds number and length of heat source were increased, although in all cases, overall irreversibility attains a minimum value at a specific Schmidt number.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100335
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100335
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20190361s20170375
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.36 n.1 2019
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213176342216704