Relationship of lambda and overshoot of step response for a direct synthesis PI controller
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000300011 |
Resumo: | The direct synthesis (DS) tuning method is a model-based method for a feedback controller. The main principle of this method is to obtain the controller settings based on a predetermined desired closed loop response. The main advantage is that there is only one parameter to be adjusted, which is lambda (λ), the speed of the desired closed loop response. There are several guidelines available for selecting λ in order to ensure that the closed loop step response matches the desired response. In this paper, a guideline that relates λ and overshoot is proposed and it worked well over a wide range of R varying from 0.05 to 2. For a fair comparison of DS-tuned controllers with different λ guidelines, both performance and robustness for a unit step change in the set point are considered. It was found that the DS-tuned controller with this proposed guideline performed better and the gain margin (GM) and phase margin (PM) lie between 2≤GM≤5 and 30º≤PM≤75º, respectively. Besides, its overshoot changed less with a ±25% process model mismatch, except for τ mismatch. |
id |
ABEQ-1_c8d95ccd3664152b15a9e7a533dfb71b |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322012000300011 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Relationship of lambda and overshoot of step response for a direct synthesis PI controllerDirect synthesisLambdaOvershootPI controllerThe direct synthesis (DS) tuning method is a model-based method for a feedback controller. The main principle of this method is to obtain the controller settings based on a predetermined desired closed loop response. The main advantage is that there is only one parameter to be adjusted, which is lambda (λ), the speed of the desired closed loop response. There are several guidelines available for selecting λ in order to ensure that the closed loop step response matches the desired response. In this paper, a guideline that relates λ and overshoot is proposed and it worked well over a wide range of R varying from 0.05 to 2. For a fair comparison of DS-tuned controllers with different λ guidelines, both performance and robustness for a unit step change in the set point are considered. It was found that the DS-tuned controller with this proposed guideline performed better and the gain margin (GM) and phase margin (PM) lie between 2≤GM≤5 and 30º≤PM≤75º, respectively. Besides, its overshoot changed less with a ±25% process model mismatch, except for τ mismatch.Brazilian Society of Chemical Engineering2012-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000300011Brazilian Journal of Chemical Engineering v.29 n.3 2012reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322012000300011info:eu-repo/semantics/openAccessTan,L. W.Raja Ahmad,R. K.Ibrahim,M. N.Taip,F. S.eng2012-10-25T00:00:00Zoai:scielo:S0104-66322012000300011Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2012-10-25T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Relationship of lambda and overshoot of step response for a direct synthesis PI controller |
title |
Relationship of lambda and overshoot of step response for a direct synthesis PI controller |
spellingShingle |
Relationship of lambda and overshoot of step response for a direct synthesis PI controller Tan,L. W. Direct synthesis Lambda Overshoot PI controller |
title_short |
Relationship of lambda and overshoot of step response for a direct synthesis PI controller |
title_full |
Relationship of lambda and overshoot of step response for a direct synthesis PI controller |
title_fullStr |
Relationship of lambda and overshoot of step response for a direct synthesis PI controller |
title_full_unstemmed |
Relationship of lambda and overshoot of step response for a direct synthesis PI controller |
title_sort |
Relationship of lambda and overshoot of step response for a direct synthesis PI controller |
author |
Tan,L. W. |
author_facet |
Tan,L. W. Raja Ahmad,R. K. Ibrahim,M. N. Taip,F. S. |
author_role |
author |
author2 |
Raja Ahmad,R. K. Ibrahim,M. N. Taip,F. S. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Tan,L. W. Raja Ahmad,R. K. Ibrahim,M. N. Taip,F. S. |
dc.subject.por.fl_str_mv |
Direct synthesis Lambda Overshoot PI controller |
topic |
Direct synthesis Lambda Overshoot PI controller |
description |
The direct synthesis (DS) tuning method is a model-based method for a feedback controller. The main principle of this method is to obtain the controller settings based on a predetermined desired closed loop response. The main advantage is that there is only one parameter to be adjusted, which is lambda (λ), the speed of the desired closed loop response. There are several guidelines available for selecting λ in order to ensure that the closed loop step response matches the desired response. In this paper, a guideline that relates λ and overshoot is proposed and it worked well over a wide range of R varying from 0.05 to 2. For a fair comparison of DS-tuned controllers with different λ guidelines, both performance and robustness for a unit step change in the set point are considered. It was found that the DS-tuned controller with this proposed guideline performed better and the gain margin (GM) and phase margin (PM) lie between 2≤GM≤5 and 30º≤PM≤75º, respectively. Besides, its overshoot changed less with a ±25% process model mismatch, except for τ mismatch. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000300011 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322012000300011 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322012000300011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.29 n.3 2012 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213173834022912 |