Using hybrid neural models to describe supercritical fluid extraction processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000300005 |
Resumo: | This work presents the results of a hybrid neural model (HNM) technique as applied to modeling supercritical fluid extraction (SCFE) curves obtained from two Brazilian vegetable matrices. The serial HNM employed uses a neural network to estimate parameters of a phenomenological model. A small set of SCFE data for each vegetable was used to generate a semi-empirical extended data set, large enough for efficient network training, using three different approaches. Afterwards, other sets of experimental data, not used during the training procedure, were used to validate each approach. The HNM correlates well withthe experimental data, and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes. |
id |
ABEQ-1_cd6782a1e4d4dbc858f5cd2f5119f34b |
---|---|
oai_identifier_str |
oai:scielo:S0104-66321999000300005 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Using hybrid neural models to describe supercritical fluid extraction processesSupercritical fluid extractionModelingArtificial neural networkBrazilian rosemary oilpepper oilThis work presents the results of a hybrid neural model (HNM) technique as applied to modeling supercritical fluid extraction (SCFE) curves obtained from two Brazilian vegetable matrices. The serial HNM employed uses a neural network to estimate parameters of a phenomenological model. A small set of SCFE data for each vegetable was used to generate a semi-empirical extended data set, large enough for efficient network training, using three different approaches. Afterwards, other sets of experimental data, not used during the training procedure, were used to validate each approach. The HNM correlates well withthe experimental data, and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes.Brazilian Society of Chemical Engineering1999-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000300005Brazilian Journal of Chemical Engineering v.16 n.3 1999reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66321999000300005info:eu-repo/semantics/openAccessFONSECA,A. P.STUART,G.OLIVEIRA,J. V.LIMA,E.eng1999-12-16T00:00:00Zoai:scielo:S0104-66321999000300005Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:1999-12-16T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Using hybrid neural models to describe supercritical fluid extraction processes |
title |
Using hybrid neural models to describe supercritical fluid extraction processes |
spellingShingle |
Using hybrid neural models to describe supercritical fluid extraction processes FONSECA,A. P. Supercritical fluid extraction Modeling Artificial neural network Brazilian rosemary oil pepper oil |
title_short |
Using hybrid neural models to describe supercritical fluid extraction processes |
title_full |
Using hybrid neural models to describe supercritical fluid extraction processes |
title_fullStr |
Using hybrid neural models to describe supercritical fluid extraction processes |
title_full_unstemmed |
Using hybrid neural models to describe supercritical fluid extraction processes |
title_sort |
Using hybrid neural models to describe supercritical fluid extraction processes |
author |
FONSECA,A. P. |
author_facet |
FONSECA,A. P. STUART,G. OLIVEIRA,J. V. LIMA,E. |
author_role |
author |
author2 |
STUART,G. OLIVEIRA,J. V. LIMA,E. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
FONSECA,A. P. STUART,G. OLIVEIRA,J. V. LIMA,E. |
dc.subject.por.fl_str_mv |
Supercritical fluid extraction Modeling Artificial neural network Brazilian rosemary oil pepper oil |
topic |
Supercritical fluid extraction Modeling Artificial neural network Brazilian rosemary oil pepper oil |
description |
This work presents the results of a hybrid neural model (HNM) technique as applied to modeling supercritical fluid extraction (SCFE) curves obtained from two Brazilian vegetable matrices. The serial HNM employed uses a neural network to estimate parameters of a phenomenological model. A small set of SCFE data for each vegetable was used to generate a semi-empirical extended data set, large enough for efficient network training, using three different approaches. Afterwards, other sets of experimental data, not used during the training procedure, were used to validate each approach. The HNM correlates well withthe experimental data, and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000300005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66321999000300005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66321999000300005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.16 n.3 1999 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213170414616576 |