STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION

Detalhes bibliográficos
Autor(a) principal: Babaei,M.
Data de Publicação: 2019
Outros Autores: Anbia,M., Kazemipour,M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401613
Resumo: Abstract In order to improve the adsorption capacity and selectivity of CO2/CH4 and CO2/N2, we have functionalized multi-walled carbon nanotubes (MWCNT) with 3-aminopropyltriethoxysilane (APTES). The functionalized MWCNT was characterized by Fourier transform infrared (FT-IR), energy dispersive X-ray spectroscopy (EDX) and BET analysis. CO2, CH4 and N2 adsorption at two different temperatures and P < 5 bar on the functionalized MWCNTs was investigated by the volumetric method. The selectivity of the functionalized MWCNTs for CO2/CH4 and CO2/N2 was studied and compared with MWCNTs. The functionalized MWCNTs show higher adsorption capacity of CO2 and selectivity of CO2/CH4 and CO2/N2 in comparison with the MWCNTs at different pressures. The highest CO2/CH4 and CO2/N2 selectivities for the functionalized MWCNTs were 6.78 and 26.14, respectively, at a pressure of 0.2 bar and at 298 K. Two of the most common adsorption models, the Langmuir and Sips isotherms, were used to correlate the experimental data of CO2 and CH4 adsorption on the adsorbents. The results confirm that the functionalized MWCNTs are promising materials for the separation and purification of gases.
id ABEQ-1_d85b5b44790664d7ba85f25ce5358eba
oai_identifier_str oai:scielo:S0104-66322019000401613
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATIONCarbon nanotubesFunctionalizationAdsorption isothermGas separationAbstract In order to improve the adsorption capacity and selectivity of CO2/CH4 and CO2/N2, we have functionalized multi-walled carbon nanotubes (MWCNT) with 3-aminopropyltriethoxysilane (APTES). The functionalized MWCNT was characterized by Fourier transform infrared (FT-IR), energy dispersive X-ray spectroscopy (EDX) and BET analysis. CO2, CH4 and N2 adsorption at two different temperatures and P < 5 bar on the functionalized MWCNTs was investigated by the volumetric method. The selectivity of the functionalized MWCNTs for CO2/CH4 and CO2/N2 was studied and compared with MWCNTs. The functionalized MWCNTs show higher adsorption capacity of CO2 and selectivity of CO2/CH4 and CO2/N2 in comparison with the MWCNTs at different pressures. The highest CO2/CH4 and CO2/N2 selectivities for the functionalized MWCNTs were 6.78 and 26.14, respectively, at a pressure of 0.2 bar and at 298 K. Two of the most common adsorption models, the Langmuir and Sips isotherms, were used to correlate the experimental data of CO2 and CH4 adsorption on the adsorbents. The results confirm that the functionalized MWCNTs are promising materials for the separation and purification of gases.Brazilian Society of Chemical Engineering2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401613Brazilian Journal of Chemical Engineering v.36 n.4 2019reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20190364s20180277info:eu-repo/semantics/openAccessBabaei,M.Anbia,M.Kazemipour,M.eng2020-01-08T00:00:00Zoai:scielo:S0104-66322019000401613Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2020-01-08T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION
title STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION
spellingShingle STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION
Babaei,M.
Carbon nanotubes
Functionalization
Adsorption isotherm
Gas separation
title_short STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION
title_full STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION
title_fullStr STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION
title_full_unstemmed STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION
title_sort STUDY OF THE EFFECT OF FUNCTIONALIZATION OF CARBON NANOTUBES ON GAS SEPARATION
author Babaei,M.
author_facet Babaei,M.
Anbia,M.
Kazemipour,M.
author_role author
author2 Anbia,M.
Kazemipour,M.
author2_role author
author
dc.contributor.author.fl_str_mv Babaei,M.
Anbia,M.
Kazemipour,M.
dc.subject.por.fl_str_mv Carbon nanotubes
Functionalization
Adsorption isotherm
Gas separation
topic Carbon nanotubes
Functionalization
Adsorption isotherm
Gas separation
description Abstract In order to improve the adsorption capacity and selectivity of CO2/CH4 and CO2/N2, we have functionalized multi-walled carbon nanotubes (MWCNT) with 3-aminopropyltriethoxysilane (APTES). The functionalized MWCNT was characterized by Fourier transform infrared (FT-IR), energy dispersive X-ray spectroscopy (EDX) and BET analysis. CO2, CH4 and N2 adsorption at two different temperatures and P < 5 bar on the functionalized MWCNTs was investigated by the volumetric method. The selectivity of the functionalized MWCNTs for CO2/CH4 and CO2/N2 was studied and compared with MWCNTs. The functionalized MWCNTs show higher adsorption capacity of CO2 and selectivity of CO2/CH4 and CO2/N2 in comparison with the MWCNTs at different pressures. The highest CO2/CH4 and CO2/N2 selectivities for the functionalized MWCNTs were 6.78 and 26.14, respectively, at a pressure of 0.2 bar and at 298 K. Two of the most common adsorption models, the Langmuir and Sips isotherms, were used to correlate the experimental data of CO2 and CH4 adsorption on the adsorbents. The results confirm that the functionalized MWCNTs are promising materials for the separation and purification of gases.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401613
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000401613
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20190364s20180277
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.36 n.4 2019
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213176744869888