Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000300002 |
Resumo: | This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs). The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC) lab-scale AFBRs (R1 and R2) loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR), over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid) substrate concentration (chemical oxygen demand (COD) from 0.85 to 2.66 g L-1) and on the feed flow rate (from 3.2 up to 6.0 L d-1) considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA) concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4) and 0.75⋅10(4) s² kg-1 m-1 for R1 and R2, respectively, were estimated. |
id |
ABEQ-1_e18e2955b3313fc349df684474afddcd |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322009000300002 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactorsAnaerobic ProcessesBiofilmsDynamic ModelingFluidized Bed BioreactorsWastewater TreatmentThis work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs). The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC) lab-scale AFBRs (R1 and R2) loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR), over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid) substrate concentration (chemical oxygen demand (COD) from 0.85 to 2.66 g L-1) and on the feed flow rate (from 3.2 up to 6.0 L d-1) considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA) concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4) and 0.75⋅10(4) s² kg-1 m-1 for R1 and R2, respectively, were estimated.Brazilian Society of Chemical Engineering2009-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000300002Brazilian Journal of Chemical Engineering v.26 n.3 2009reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322009000300002info:eu-repo/semantics/openAccessFuentes,M.Mussati,M. C.Aguirre,P. A.Scenna,N. J.eng2009-09-01T00:00:00Zoai:scielo:S0104-66322009000300002Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2009-09-01T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors |
title |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors |
spellingShingle |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors Fuentes,M. Anaerobic Processes Biofilms Dynamic Modeling Fluidized Bed Bioreactors Wastewater Treatment |
title_short |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors |
title_full |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors |
title_fullStr |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors |
title_full_unstemmed |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors |
title_sort |
Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors |
author |
Fuentes,M. |
author_facet |
Fuentes,M. Mussati,M. C. Aguirre,P. A. Scenna,N. J. |
author_role |
author |
author2 |
Mussati,M. C. Aguirre,P. A. Scenna,N. J. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Fuentes,M. Mussati,M. C. Aguirre,P. A. Scenna,N. J. |
dc.subject.por.fl_str_mv |
Anaerobic Processes Biofilms Dynamic Modeling Fluidized Bed Bioreactors Wastewater Treatment |
topic |
Anaerobic Processes Biofilms Dynamic Modeling Fluidized Bed Bioreactors Wastewater Treatment |
description |
This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs). The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC) lab-scale AFBRs (R1 and R2) loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR), over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid) substrate concentration (chemical oxygen demand (COD) from 0.85 to 2.66 g L-1) and on the feed flow rate (from 3.2 up to 6.0 L d-1) considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA) concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4) and 0.75⋅10(4) s² kg-1 m-1 for R1 and R2, respectively, were estimated. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000300002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000300002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322009000300002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.26 n.3 2009 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213173032910848 |