The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400022 |
Resumo: | The molecular weight distribution (MWD) and its parameters are of the fundamental importance in the characterization of polymers. Therefore, the development of techniques for faster MWD determination is a relevant issue. This paper aims at implementing one of the relaxation models from double reptation theory proposed in the literature and analyzing the numeric strategy for the evaluation of the integrals appearing in the relaxation model. The inverse problem, i.e., the determination of the MWD from rheological data using a specified relaxation model and an imposed distribution function was approximated. Concerning the numerical strategy for the evaluation of the integrals appearing in the relaxation models, the use of Gauss-Hermite quadrature using a new change of variables was proposed. In the test of samples of polyethylene with polydispersities less than 10, the application of this methodology led to MWD curves which provided a good fit of the experimental SEC data. |
id |
ABEQ-1_e97de4a31cb372d906dd12102dcef21e |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322013000400022 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometryRheologyInverse ProblemGauss-Hermite QuadratureThe molecular weight distribution (MWD) and its parameters are of the fundamental importance in the characterization of polymers. Therefore, the development of techniques for faster MWD determination is a relevant issue. This paper aims at implementing one of the relaxation models from double reptation theory proposed in the literature and analyzing the numeric strategy for the evaluation of the integrals appearing in the relaxation model. The inverse problem, i.e., the determination of the MWD from rheological data using a specified relaxation model and an imposed distribution function was approximated. Concerning the numerical strategy for the evaluation of the integrals appearing in the relaxation models, the use of Gauss-Hermite quadrature using a new change of variables was proposed. In the test of samples of polyethylene with polydispersities less than 10, the application of this methodology led to MWD curves which provided a good fit of the experimental SEC data.Brazilian Society of Chemical Engineering2013-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400022Brazilian Journal of Chemical Engineering v.30 n.4 2013reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322013000400022info:eu-repo/semantics/openAccessFarias,T. M.Cardozo,N. S. M.Secchi,A. R.eng2014-01-10T00:00:00Zoai:scielo:S0104-66322013000400022Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2014-01-10T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry |
title |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry |
spellingShingle |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry Farias,T. M. Rheology Inverse Problem Gauss-Hermite Quadrature |
title_short |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry |
title_full |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry |
title_fullStr |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry |
title_full_unstemmed |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry |
title_sort |
The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry |
author |
Farias,T. M. |
author_facet |
Farias,T. M. Cardozo,N. S. M. Secchi,A. R. |
author_role |
author |
author2 |
Cardozo,N. S. M. Secchi,A. R. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Farias,T. M. Cardozo,N. S. M. Secchi,A. R. |
dc.subject.por.fl_str_mv |
Rheology Inverse Problem Gauss-Hermite Quadrature |
topic |
Rheology Inverse Problem Gauss-Hermite Quadrature |
description |
The molecular weight distribution (MWD) and its parameters are of the fundamental importance in the characterization of polymers. Therefore, the development of techniques for faster MWD determination is a relevant issue. This paper aims at implementing one of the relaxation models from double reptation theory proposed in the literature and analyzing the numeric strategy for the evaluation of the integrals appearing in the relaxation model. The inverse problem, i.e., the determination of the MWD from rheological data using a specified relaxation model and an imposed distribution function was approximated. Concerning the numerical strategy for the evaluation of the integrals appearing in the relaxation models, the use of Gauss-Hermite quadrature using a new change of variables was proposed. In the test of samples of polyethylene with polydispersities less than 10, the application of this methodology led to MWD curves which provided a good fit of the experimental SEC data. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400022 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322013000400022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.30 n.4 2013 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213174240870400 |