The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry

Detalhes bibliográficos
Autor(a) principal: Farias,T. M.
Data de Publicação: 2013
Outros Autores: Cardozo,N. S. M., Secchi,A. R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400022
Resumo: The molecular weight distribution (MWD) and its parameters are of the fundamental importance in the characterization of polymers. Therefore, the development of techniques for faster MWD determination is a relevant issue. This paper aims at implementing one of the relaxation models from double reptation theory proposed in the literature and analyzing the numeric strategy for the evaluation of the integrals appearing in the relaxation model. The inverse problem, i.e., the determination of the MWD from rheological data using a specified relaxation model and an imposed distribution function was approximated. Concerning the numerical strategy for the evaluation of the integrals appearing in the relaxation models, the use of Gauss-Hermite quadrature using a new change of variables was proposed. In the test of samples of polyethylene with polydispersities less than 10, the application of this methodology led to MWD curves which provided a good fit of the experimental SEC data.
id ABEQ-1_e97de4a31cb372d906dd12102dcef21e
oai_identifier_str oai:scielo:S0104-66322013000400022
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometryRheologyInverse ProblemGauss-Hermite QuadratureThe molecular weight distribution (MWD) and its parameters are of the fundamental importance in the characterization of polymers. Therefore, the development of techniques for faster MWD determination is a relevant issue. This paper aims at implementing one of the relaxation models from double reptation theory proposed in the literature and analyzing the numeric strategy for the evaluation of the integrals appearing in the relaxation model. The inverse problem, i.e., the determination of the MWD from rheological data using a specified relaxation model and an imposed distribution function was approximated. Concerning the numerical strategy for the evaluation of the integrals appearing in the relaxation models, the use of Gauss-Hermite quadrature using a new change of variables was proposed. In the test of samples of polyethylene with polydispersities less than 10, the application of this methodology led to MWD curves which provided a good fit of the experimental SEC data.Brazilian Society of Chemical Engineering2013-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400022Brazilian Journal of Chemical Engineering v.30 n.4 2013reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322013000400022info:eu-repo/semantics/openAccessFarias,T. M.Cardozo,N. S. M.Secchi,A. R.eng2014-01-10T00:00:00Zoai:scielo:S0104-66322013000400022Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2014-01-10T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
title The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
spellingShingle The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
Farias,T. M.
Rheology
Inverse Problem
Gauss-Hermite Quadrature
title_short The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
title_full The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
title_fullStr The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
title_full_unstemmed The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
title_sort The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry
author Farias,T. M.
author_facet Farias,T. M.
Cardozo,N. S. M.
Secchi,A. R.
author_role author
author2 Cardozo,N. S. M.
Secchi,A. R.
author2_role author
author
dc.contributor.author.fl_str_mv Farias,T. M.
Cardozo,N. S. M.
Secchi,A. R.
dc.subject.por.fl_str_mv Rheology
Inverse Problem
Gauss-Hermite Quadrature
topic Rheology
Inverse Problem
Gauss-Hermite Quadrature
description The molecular weight distribution (MWD) and its parameters are of the fundamental importance in the characterization of polymers. Therefore, the development of techniques for faster MWD determination is a relevant issue. This paper aims at implementing one of the relaxation models from double reptation theory proposed in the literature and analyzing the numeric strategy for the evaluation of the integrals appearing in the relaxation model. The inverse problem, i.e., the determination of the MWD from rheological data using a specified relaxation model and an imposed distribution function was approximated. Concerning the numerical strategy for the evaluation of the integrals appearing in the relaxation models, the use of Gauss-Hermite quadrature using a new change of variables was proposed. In the test of samples of polyethylene with polydispersities less than 10, the application of this methodology led to MWD curves which provided a good fit of the experimental SEC data.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400022
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400022
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322013000400022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.30 n.4 2013
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213174240870400