Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322008000200002 |
Resumo: | Starch phosphorylase has been isolated from cabbage (Elephantopus scabar) leaves and partially purified using ammonium sulfate fractionation. The partially purified enzyme was desalted using Sephadex-G-25 chromatography. In the direction of polysaccharide synthesis, the enzyme showed optimum activity at pH 6.0 with two half pH optima at pH 5.3 and pH 7.1 whereas in the direction of glucose-1-phosphate formation, it showed optimum pH at pH 7.0 with half pH-optima at pH 6.4 and 7.6. The optimum temperature for the enzyme activity has been found to be 37ºC with two half temperature optima at 34ºC and 40ºC. The partially purified enzyme has been immobilized using egg shell as solid support. The percentage retention of the enzyme on egg shell was nearly 56%. After immobilization, specific activity of the enzyme increased from 0. 0225 to 0.0452. Upon immobilization, there was a slight alkaline shift in the optimum pH when assayed in both the directions. The immobilized enzyme also displayed increased optimum temperature and thermo-stability and could be reused number of times. The increase in thermo-stability and reusability of the immobilized enzyme has been exploited for the production of glucose-1-phosphate, a cytostatic compound used in cardio-therapy. The glucose-1-phosphate produced has been purified with nearly 95% purity after adsorption chromatography on norite and ion exchange chromatography on DEAE cellulose. |
id |
ABEQ-1_fa0897cd07847c75e760833d4fadd6b4 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322008000200002 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphateStarch phosphorylaseImmobilizationGlucose-1-phosphateEgg shellCabbageStarch phosphorylase has been isolated from cabbage (Elephantopus scabar) leaves and partially purified using ammonium sulfate fractionation. The partially purified enzyme was desalted using Sephadex-G-25 chromatography. In the direction of polysaccharide synthesis, the enzyme showed optimum activity at pH 6.0 with two half pH optima at pH 5.3 and pH 7.1 whereas in the direction of glucose-1-phosphate formation, it showed optimum pH at pH 7.0 with half pH-optima at pH 6.4 and 7.6. The optimum temperature for the enzyme activity has been found to be 37ºC with two half temperature optima at 34ºC and 40ºC. The partially purified enzyme has been immobilized using egg shell as solid support. The percentage retention of the enzyme on egg shell was nearly 56%. After immobilization, specific activity of the enzyme increased from 0. 0225 to 0.0452. Upon immobilization, there was a slight alkaline shift in the optimum pH when assayed in both the directions. The immobilized enzyme also displayed increased optimum temperature and thermo-stability and could be reused number of times. The increase in thermo-stability and reusability of the immobilized enzyme has been exploited for the production of glucose-1-phosphate, a cytostatic compound used in cardio-therapy. The glucose-1-phosphate produced has been purified with nearly 95% purity after adsorption chromatography on norite and ion exchange chromatography on DEAE cellulose.Brazilian Society of Chemical Engineering2008-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322008000200002Brazilian Journal of Chemical Engineering v.25 n.2 2008reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322008000200002info:eu-repo/semantics/openAccessGarg,N.Kumar,A.eng2008-07-03T00:00:00Zoai:scielo:S0104-66322008000200002Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2008-07-03T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate |
title |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate |
spellingShingle |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate Garg,N. Starch phosphorylase Immobilization Glucose-1-phosphate Egg shell Cabbage |
title_short |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate |
title_full |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate |
title_fullStr |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate |
title_full_unstemmed |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate |
title_sort |
Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate |
author |
Garg,N. |
author_facet |
Garg,N. Kumar,A. |
author_role |
author |
author2 |
Kumar,A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Garg,N. Kumar,A. |
dc.subject.por.fl_str_mv |
Starch phosphorylase Immobilization Glucose-1-phosphate Egg shell Cabbage |
topic |
Starch phosphorylase Immobilization Glucose-1-phosphate Egg shell Cabbage |
description |
Starch phosphorylase has been isolated from cabbage (Elephantopus scabar) leaves and partially purified using ammonium sulfate fractionation. The partially purified enzyme was desalted using Sephadex-G-25 chromatography. In the direction of polysaccharide synthesis, the enzyme showed optimum activity at pH 6.0 with two half pH optima at pH 5.3 and pH 7.1 whereas in the direction of glucose-1-phosphate formation, it showed optimum pH at pH 7.0 with half pH-optima at pH 6.4 and 7.6. The optimum temperature for the enzyme activity has been found to be 37ºC with two half temperature optima at 34ºC and 40ºC. The partially purified enzyme has been immobilized using egg shell as solid support. The percentage retention of the enzyme on egg shell was nearly 56%. After immobilization, specific activity of the enzyme increased from 0. 0225 to 0.0452. Upon immobilization, there was a slight alkaline shift in the optimum pH when assayed in both the directions. The immobilized enzyme also displayed increased optimum temperature and thermo-stability and could be reused number of times. The increase in thermo-stability and reusability of the immobilized enzyme has been exploited for the production of glucose-1-phosphate, a cytostatic compound used in cardio-therapy. The glucose-1-phosphate produced has been purified with nearly 95% purity after adsorption chromatography on norite and ion exchange chromatography on DEAE cellulose. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322008000200002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322008000200002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322008000200002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.25 n.2 2008 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213172634451968 |