Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil

Detalhes bibliográficos
Autor(a) principal: Galvao Junior, Pedro Antonio
Data de Publicação: 2022
Outros Autores: Roveda, Sandra Regina Monteiro Masalskiene, Vieira, Henrique Ewbank de Miranda
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciências Ambientais (Online)
Texto Completo: https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286
Resumo: Fire has always exerted a great attraction on humans. Fires generally provide social and environmental impacts at the places where they occur. Several Brazilian localities, especially in the driest months of the year, are more susceptible to this phenomenon. In this paper, an index able of classifying levels of fire risk in areas geographically located in Brazil. This paper presents an index capable of classifying fire risk levels elaborated from neuro-fuzzy systems. Data from the municipality of Sorocaba were used to test the proposed models. The results obtained by this index are promising, reaching values of mean absolute error below 3% when applied in the prediction of the risk of fire for the maximum period of up to 3 days. The proposed index can be used as a tool to support and assist various research agencies or institutes that need to identify the possibility of burning, corroborating the measures to reduce atmospheric emitters and meeting Goal 15 of Agenda 30 as defined by the UN in 2015, which aims to stimulate conservation actions and the recovery and sustainable use of ecosystems.
id ABES-2_be86210573da06aab151b0e39765c080
oai_identifier_str oai:ojs.www.rbciamb.com.br:article/1286
network_acronym_str ABES-2
network_name_str Revista Brasileira de Ciências Ambientais (Online)
repository_id_str
spelling Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in BrazilModelos Híbridos Aplicados à Construção de Índice de Classificação de Níveis de Risco de Fogo no Brasilfuzzy modeling; forecast model; machine learning; neurofuzzy model; artificial neural networks.modelagem fuzzy; modelo de previsão; machine learning; modelo neuro-fuzzy; redes neurais artificias.Fire has always exerted a great attraction on humans. Fires generally provide social and environmental impacts at the places where they occur. Several Brazilian localities, especially in the driest months of the year, are more susceptible to this phenomenon. In this paper, an index able of classifying levels of fire risk in areas geographically located in Brazil. This paper presents an index capable of classifying fire risk levels elaborated from neuro-fuzzy systems. Data from the municipality of Sorocaba were used to test the proposed models. The results obtained by this index are promising, reaching values of mean absolute error below 3% when applied in the prediction of the risk of fire for the maximum period of up to 3 days. The proposed index can be used as a tool to support and assist various research agencies or institutes that need to identify the possibility of burning, corroborating the measures to reduce atmospheric emitters and meeting Goal 15 of Agenda 30 as defined by the UN in 2015, which aims to stimulate conservation actions and the recovery and sustainable use of ecosystems.O fogo sempre exerceu grande atração sobre os seres humanos. As queimadas, de maneira geral, proporcionam impactos sociais e ambientais nos locais onde ocorrem. Diversas localidades brasileiras, especialmente nos meses mais secos do ano, estão mais suscetíveis a esse fenômeno. O estudo e o monitoramento do risco do fogo são uma poderosa ferramenta adotada no mapeamento e sensoriamento de áreas afetadas ao longo do território brasileiro e em outras partes do mundo. Este trabalho apresenta um índice para classificar os níveis de risco de fogo, elaborado com base nos sistemas neuro-fuzzy. Dados da cidade de Sorocaba foram utilizados para testar os modelos propostos. Os resultados obtidos mostram-se promissores, alcançando valores referentes à média de erros absolutos abaixo de 3%, aplicados na previsão do risco de queima pelo período máximo de até três dias. O índice proposto poderá ser utilizado como ferramenta de apoio e auxílio a diversos órgãos ou institutos de pesquisa que necessitam identificar a possibilidade de ocorrência de queimadas. Pode, assim, colaborar nas medidas para a redução de emissores atmosféricos, de modo a satisfazer o objetivo 15 da Agenda 30 definido pela Organização das Nações Unidas em 2015, o qual visa estimular ações de conservação, recuperação e uso sustentável de ecossistemas, especialmente.Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)2022-08-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/xmlhttps://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/128610.5327/Z2176-94781286Revista Brasileira de Ciências Ambientais (RBCIAMB); v. 57 n. 3 (2022): RBCIAMB - ISSN 2176-9478 - Setembro; 364-374Revista Brasileira de Ciências Ambientais (RBCIAMB); Vol. 57 No. 3 (2022): RBCIAMB - ISSN 2176-9478 - September; 364-3742176-94781808-4524reponame:Revista Brasileira de Ciências Ambientais (Online)instname:Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)instacron:ABESenghttps://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286/12https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286/27Copyright (c) 2022 Brazilian Journal of Environmental Sciences (Online)http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGalvao Junior, Pedro AntonioRoveda, Sandra Regina Monteiro MasalskieneVieira, Henrique Ewbank de Miranda2023-11-09T17:38:26Zoai:ojs.www.rbciamb.com.br:article/1286Revistahttp://www.rbciamb.com.br/index.php/Publicacoes_RBCIAMBhttps://www.rbciamb.com.br/Publicacoes_RBCIAMB/oairbciamb@abes-dn.org.br||2176-94781804-4524opendoar:2023-11-09T17:38:26Revista Brasileira de Ciências Ambientais (Online) - Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)false
dc.title.none.fl_str_mv Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
Modelos Híbridos Aplicados à Construção de Índice de Classificação de Níveis de Risco de Fogo no Brasil
title Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
spellingShingle Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
Galvao Junior, Pedro Antonio
fuzzy modeling; forecast model; machine learning; neurofuzzy model; artificial neural networks.
modelagem fuzzy; modelo de previsão; machine learning; modelo neuro-fuzzy; redes neurais artificias.
title_short Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
title_full Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
title_fullStr Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
title_full_unstemmed Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
title_sort Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
author Galvao Junior, Pedro Antonio
author_facet Galvao Junior, Pedro Antonio
Roveda, Sandra Regina Monteiro Masalskiene
Vieira, Henrique Ewbank de Miranda
author_role author
author2 Roveda, Sandra Regina Monteiro Masalskiene
Vieira, Henrique Ewbank de Miranda
author2_role author
author
dc.contributor.author.fl_str_mv Galvao Junior, Pedro Antonio
Roveda, Sandra Regina Monteiro Masalskiene
Vieira, Henrique Ewbank de Miranda
dc.subject.por.fl_str_mv fuzzy modeling; forecast model; machine learning; neurofuzzy model; artificial neural networks.
modelagem fuzzy; modelo de previsão; machine learning; modelo neuro-fuzzy; redes neurais artificias.
topic fuzzy modeling; forecast model; machine learning; neurofuzzy model; artificial neural networks.
modelagem fuzzy; modelo de previsão; machine learning; modelo neuro-fuzzy; redes neurais artificias.
description Fire has always exerted a great attraction on humans. Fires generally provide social and environmental impacts at the places where they occur. Several Brazilian localities, especially in the driest months of the year, are more susceptible to this phenomenon. In this paper, an index able of classifying levels of fire risk in areas geographically located in Brazil. This paper presents an index capable of classifying fire risk levels elaborated from neuro-fuzzy systems. Data from the municipality of Sorocaba were used to test the proposed models. The results obtained by this index are promising, reaching values of mean absolute error below 3% when applied in the prediction of the risk of fire for the maximum period of up to 3 days. The proposed index can be used as a tool to support and assist various research agencies or institutes that need to identify the possibility of burning, corroborating the measures to reduce atmospheric emitters and meeting Goal 15 of Agenda 30 as defined by the UN in 2015, which aims to stimulate conservation actions and the recovery and sustainable use of ecosystems.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286
10.5327/Z2176-94781286
url https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286
identifier_str_mv 10.5327/Z2176-94781286
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286/12
https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286/27
dc.rights.driver.fl_str_mv Copyright (c) 2022 Brazilian Journal of Environmental Sciences (Online)
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Brazilian Journal of Environmental Sciences (Online)
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)
publisher.none.fl_str_mv Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)
dc.source.none.fl_str_mv Revista Brasileira de Ciências Ambientais (RBCIAMB); v. 57 n. 3 (2022): RBCIAMB - ISSN 2176-9478 - Setembro; 364-374
Revista Brasileira de Ciências Ambientais (RBCIAMB); Vol. 57 No. 3 (2022): RBCIAMB - ISSN 2176-9478 - September; 364-374
2176-9478
1808-4524
reponame:Revista Brasileira de Ciências Ambientais (Online)
instname:Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)
instacron:ABES
instname_str Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)
instacron_str ABES
institution ABES
reponame_str Revista Brasileira de Ciências Ambientais (Online)
collection Revista Brasileira de Ciências Ambientais (Online)
repository.name.fl_str_mv Revista Brasileira de Ciências Ambientais (Online) - Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)
repository.mail.fl_str_mv rbciamb@abes-dn.org.br||
_version_ 1797068919157030912