Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ciências Ambientais (Online) |
Texto Completo: | https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286 |
Resumo: | Fire has always exerted a great attraction on humans. Fires generally provide social and environmental impacts at the places where they occur. Several Brazilian localities, especially in the driest months of the year, are more susceptible to this phenomenon. In this paper, an index able of classifying levels of fire risk in areas geographically located in Brazil. This paper presents an index capable of classifying fire risk levels elaborated from neuro-fuzzy systems. Data from the municipality of Sorocaba were used to test the proposed models. The results obtained by this index are promising, reaching values of mean absolute error below 3% when applied in the prediction of the risk of fire for the maximum period of up to 3 days. The proposed index can be used as a tool to support and assist various research agencies or institutes that need to identify the possibility of burning, corroborating the measures to reduce atmospheric emitters and meeting Goal 15 of Agenda 30 as defined by the UN in 2015, which aims to stimulate conservation actions and the recovery and sustainable use of ecosystems. |
id |
ABES-2_be86210573da06aab151b0e39765c080 |
---|---|
oai_identifier_str |
oai:ojs.www.rbciamb.com.br:article/1286 |
network_acronym_str |
ABES-2 |
network_name_str |
Revista Brasileira de Ciências Ambientais (Online) |
repository_id_str |
|
spelling |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in BrazilModelos Híbridos Aplicados à Construção de Índice de Classificação de Níveis de Risco de Fogo no Brasilfuzzy modeling; forecast model; machine learning; neurofuzzy model; artificial neural networks.modelagem fuzzy; modelo de previsão; machine learning; modelo neuro-fuzzy; redes neurais artificias.Fire has always exerted a great attraction on humans. Fires generally provide social and environmental impacts at the places where they occur. Several Brazilian localities, especially in the driest months of the year, are more susceptible to this phenomenon. In this paper, an index able of classifying levels of fire risk in areas geographically located in Brazil. This paper presents an index capable of classifying fire risk levels elaborated from neuro-fuzzy systems. Data from the municipality of Sorocaba were used to test the proposed models. The results obtained by this index are promising, reaching values of mean absolute error below 3% when applied in the prediction of the risk of fire for the maximum period of up to 3 days. The proposed index can be used as a tool to support and assist various research agencies or institutes that need to identify the possibility of burning, corroborating the measures to reduce atmospheric emitters and meeting Goal 15 of Agenda 30 as defined by the UN in 2015, which aims to stimulate conservation actions and the recovery and sustainable use of ecosystems.O fogo sempre exerceu grande atração sobre os seres humanos. As queimadas, de maneira geral, proporcionam impactos sociais e ambientais nos locais onde ocorrem. Diversas localidades brasileiras, especialmente nos meses mais secos do ano, estão mais suscetíveis a esse fenômeno. O estudo e o monitoramento do risco do fogo são uma poderosa ferramenta adotada no mapeamento e sensoriamento de áreas afetadas ao longo do território brasileiro e em outras partes do mundo. Este trabalho apresenta um índice para classificar os níveis de risco de fogo, elaborado com base nos sistemas neuro-fuzzy. Dados da cidade de Sorocaba foram utilizados para testar os modelos propostos. Os resultados obtidos mostram-se promissores, alcançando valores referentes à média de erros absolutos abaixo de 3%, aplicados na previsão do risco de queima pelo período máximo de até três dias. O índice proposto poderá ser utilizado como ferramenta de apoio e auxílio a diversos órgãos ou institutos de pesquisa que necessitam identificar a possibilidade de ocorrência de queimadas. Pode, assim, colaborar nas medidas para a redução de emissores atmosféricos, de modo a satisfazer o objetivo 15 da Agenda 30 definido pela Organização das Nações Unidas em 2015, o qual visa estimular ações de conservação, recuperação e uso sustentável de ecossistemas, especialmente.Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)2022-08-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/xmlhttps://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/128610.5327/Z2176-94781286Revista Brasileira de Ciências Ambientais (RBCIAMB); v. 57 n. 3 (2022): RBCIAMB - ISSN 2176-9478 - Setembro; 364-374Revista Brasileira de Ciências Ambientais (RBCIAMB); Vol. 57 No. 3 (2022): RBCIAMB - ISSN 2176-9478 - September; 364-3742176-94781808-4524reponame:Revista Brasileira de Ciências Ambientais (Online)instname:Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)instacron:ABESenghttps://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286/12https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286/27Copyright (c) 2022 Brazilian Journal of Environmental Sciences (Online)http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGalvao Junior, Pedro AntonioRoveda, Sandra Regina Monteiro MasalskieneVieira, Henrique Ewbank de Miranda2023-11-09T17:38:26Zoai:ojs.www.rbciamb.com.br:article/1286Revistahttp://www.rbciamb.com.br/index.php/Publicacoes_RBCIAMBhttps://www.rbciamb.com.br/Publicacoes_RBCIAMB/oairbciamb@abes-dn.org.br||2176-94781804-4524opendoar:2023-11-09T17:38:26Revista Brasileira de Ciências Ambientais (Online) - Associação Brasileira de Engenharia Sanitária e Ambiental (ABES)false |
dc.title.none.fl_str_mv |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil Modelos Híbridos Aplicados à Construção de Índice de Classificação de Níveis de Risco de Fogo no Brasil |
title |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil |
spellingShingle |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil Galvao Junior, Pedro Antonio fuzzy modeling; forecast model; machine learning; neurofuzzy model; artificial neural networks. modelagem fuzzy; modelo de previsão; machine learning; modelo neuro-fuzzy; redes neurais artificias. |
title_short |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil |
title_full |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil |
title_fullStr |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil |
title_full_unstemmed |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil |
title_sort |
Hybrid Models Applied to Create a Classification Index of Fire Risk Levels in Brazil |
author |
Galvao Junior, Pedro Antonio |
author_facet |
Galvao Junior, Pedro Antonio Roveda, Sandra Regina Monteiro Masalskiene Vieira, Henrique Ewbank de Miranda |
author_role |
author |
author2 |
Roveda, Sandra Regina Monteiro Masalskiene Vieira, Henrique Ewbank de Miranda |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Galvao Junior, Pedro Antonio Roveda, Sandra Regina Monteiro Masalskiene Vieira, Henrique Ewbank de Miranda |
dc.subject.por.fl_str_mv |
fuzzy modeling; forecast model; machine learning; neurofuzzy model; artificial neural networks. modelagem fuzzy; modelo de previsão; machine learning; modelo neuro-fuzzy; redes neurais artificias. |
topic |
fuzzy modeling; forecast model; machine learning; neurofuzzy model; artificial neural networks. modelagem fuzzy; modelo de previsão; machine learning; modelo neuro-fuzzy; redes neurais artificias. |
description |
Fire has always exerted a great attraction on humans. Fires generally provide social and environmental impacts at the places where they occur. Several Brazilian localities, especially in the driest months of the year, are more susceptible to this phenomenon. In this paper, an index able of classifying levels of fire risk in areas geographically located in Brazil. This paper presents an index capable of classifying fire risk levels elaborated from neuro-fuzzy systems. Data from the municipality of Sorocaba were used to test the proposed models. The results obtained by this index are promising, reaching values of mean absolute error below 3% when applied in the prediction of the risk of fire for the maximum period of up to 3 days. The proposed index can be used as a tool to support and assist various research agencies or institutes that need to identify the possibility of burning, corroborating the measures to reduce atmospheric emitters and meeting Goal 15 of Agenda 30 as defined by the UN in 2015, which aims to stimulate conservation actions and the recovery and sustainable use of ecosystems. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286 10.5327/Z2176-94781286 |
url |
https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286 |
identifier_str_mv |
10.5327/Z2176-94781286 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286/12 https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/1286/27 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Brazilian Journal of Environmental Sciences (Online) http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Brazilian Journal of Environmental Sciences (Online) http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Sanitária e Ambiental (ABES) |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Sanitária e Ambiental (ABES) |
dc.source.none.fl_str_mv |
Revista Brasileira de Ciências Ambientais (RBCIAMB); v. 57 n. 3 (2022): RBCIAMB - ISSN 2176-9478 - Setembro; 364-374 Revista Brasileira de Ciências Ambientais (RBCIAMB); Vol. 57 No. 3 (2022): RBCIAMB - ISSN 2176-9478 - September; 364-374 2176-9478 1808-4524 reponame:Revista Brasileira de Ciências Ambientais (Online) instname:Associação Brasileira de Engenharia Sanitária e Ambiental (ABES) instacron:ABES |
instname_str |
Associação Brasileira de Engenharia Sanitária e Ambiental (ABES) |
instacron_str |
ABES |
institution |
ABES |
reponame_str |
Revista Brasileira de Ciências Ambientais (Online) |
collection |
Revista Brasileira de Ciências Ambientais (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ciências Ambientais (Online) - Associação Brasileira de Engenharia Sanitária e Ambiental (ABES) |
repository.mail.fl_str_mv |
rbciamb@abes-dn.org.br|| |
_version_ |
1797068919157030912 |