The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting

Detalhes bibliográficos
Autor(a) principal: Freitas,Isabela S de
Data de Publicação: 2021
Outros Autores: Roldán,Gustavo Q, Macedo,Ana Claudia, Mello,Simone da C
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Horticultura Brasileira
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-05362021000100086
Resumo: ABSTRACT Supplemental lighting is becoming a common practice for horticultural greenhouse industries, especially at high-latitude countries. However, no scientific reports were found on this topic in tropical climate countries. This study investigates the effects of LED-interlighting and grafting on photosynthetic response and yield and quality of mini cucumber (hybrid Larino). The experiment took place from April to August in a greenhouse located at a Cwa climate type in Piracicaba (SP), Brazil (22°42’S; 47°37’W; 541 m altitude). The experiment was arranged in completely randomized block design composed of three types of seedlings (ungrafted hybrid, hybrid grafted onto rootstock cultivar Keeper and hybrid grafted onto rootstock cultivar Shelper) and two environments related to light condition (LED supplemental light and natural light as control). The LED devices were placed horizontally at 15 cm from the plants and at 1,5 m height from the floor. The LEDs emitted a photon flux of 220 µmol m-2 s-1 by red light (80%) with a peak wavelength of 662 nm and blue light (20%) with a peak wavelength of 452 nm. Lighting was used for 12 h d-1 from 30 days after seedling transplanting until the end of the growth period. The air temperature and relative humidity (RH) were maintained at 23.5±4°C and 72±10% during the light period, respectively. At night, average temperature was 18.6±5°C and the RH was 90±5%. The LED-interlighting treatment increased in 40% the plant CO2 net assimilation rate compared to plants grown under natural light in the greenhouse. Plants grafted onto both rootstocks had higher CO2 net assimilation rate (µmol CO2 m-2 s-1), apparent carboxylation efficiency (µmol CO2 mol air-1) and apparent electron transport rate (µmol electrons m-2 s-1) than non-grafted ones. The early yield increased 11.6% and 24% in response to LED-interlighting and grafting, respectively. The commercial yield also increased with LED light at rate of 13% but did not enhance with grafting. Postharvest quality parameters as titratable acidity, total soluble solids and shelf life were not affected by the LED light supplementation. Our study shows that even in tropical climate conditions LED-interlighting can be used as a tool to improve commercial cucumber production.
id ABH-1_635be62254c358f07efa19e0c398f187
oai_identifier_str oai:scielo:S0102-05362021000100086
network_acronym_str ABH-1
network_name_str Horticultura Brasileira
repository_id_str
spelling The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and graftingCucumis sativussupplemental lightinggraftingCO2 ratepostharvestABSTRACT Supplemental lighting is becoming a common practice for horticultural greenhouse industries, especially at high-latitude countries. However, no scientific reports were found on this topic in tropical climate countries. This study investigates the effects of LED-interlighting and grafting on photosynthetic response and yield and quality of mini cucumber (hybrid Larino). The experiment took place from April to August in a greenhouse located at a Cwa climate type in Piracicaba (SP), Brazil (22°42’S; 47°37’W; 541 m altitude). The experiment was arranged in completely randomized block design composed of three types of seedlings (ungrafted hybrid, hybrid grafted onto rootstock cultivar Keeper and hybrid grafted onto rootstock cultivar Shelper) and two environments related to light condition (LED supplemental light and natural light as control). The LED devices were placed horizontally at 15 cm from the plants and at 1,5 m height from the floor. The LEDs emitted a photon flux of 220 µmol m-2 s-1 by red light (80%) with a peak wavelength of 662 nm and blue light (20%) with a peak wavelength of 452 nm. Lighting was used for 12 h d-1 from 30 days after seedling transplanting until the end of the growth period. The air temperature and relative humidity (RH) were maintained at 23.5±4°C and 72±10% during the light period, respectively. At night, average temperature was 18.6±5°C and the RH was 90±5%. The LED-interlighting treatment increased in 40% the plant CO2 net assimilation rate compared to plants grown under natural light in the greenhouse. Plants grafted onto both rootstocks had higher CO2 net assimilation rate (µmol CO2 m-2 s-1), apparent carboxylation efficiency (µmol CO2 mol air-1) and apparent electron transport rate (µmol electrons m-2 s-1) than non-grafted ones. The early yield increased 11.6% and 24% in response to LED-interlighting and grafting, respectively. The commercial yield also increased with LED light at rate of 13% but did not enhance with grafting. Postharvest quality parameters as titratable acidity, total soluble solids and shelf life were not affected by the LED light supplementation. Our study shows that even in tropical climate conditions LED-interlighting can be used as a tool to improve commercial cucumber production.Associação Brasileira de Horticultura2021-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-05362021000100086Horticultura Brasileira v.39 n.1 2021reponame:Horticultura Brasileirainstname:Associação Brasileira de Horticultura (ABH)instacron:ABH10.1590/s0102-0536-20210113info:eu-repo/semantics/openAccessFreitas,Isabela S deRoldán,Gustavo QMacedo,Ana ClaudiaMello,Simone da Ceng2021-04-22T00:00:00Zoai:scielo:S0102-05362021000100086Revistahttp://cms.horticulturabrasileira.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||hortbras@gmail.com1806-99910102-0536opendoar:2021-04-22T00:00Horticultura Brasileira - Associação Brasileira de Horticultura (ABH)false
dc.title.none.fl_str_mv The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting
title The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting
spellingShingle The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting
Freitas,Isabela S de
Cucumis sativus
supplemental lighting
grafting
CO2 rate
postharvest
title_short The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting
title_full The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting
title_fullStr The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting
title_full_unstemmed The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting
title_sort The responses of photosynthesis, fruit yield and quality of mini-cucumber to LED-interlighting and grafting
author Freitas,Isabela S de
author_facet Freitas,Isabela S de
Roldán,Gustavo Q
Macedo,Ana Claudia
Mello,Simone da C
author_role author
author2 Roldán,Gustavo Q
Macedo,Ana Claudia
Mello,Simone da C
author2_role author
author
author
dc.contributor.author.fl_str_mv Freitas,Isabela S de
Roldán,Gustavo Q
Macedo,Ana Claudia
Mello,Simone da C
dc.subject.por.fl_str_mv Cucumis sativus
supplemental lighting
grafting
CO2 rate
postharvest
topic Cucumis sativus
supplemental lighting
grafting
CO2 rate
postharvest
description ABSTRACT Supplemental lighting is becoming a common practice for horticultural greenhouse industries, especially at high-latitude countries. However, no scientific reports were found on this topic in tropical climate countries. This study investigates the effects of LED-interlighting and grafting on photosynthetic response and yield and quality of mini cucumber (hybrid Larino). The experiment took place from April to August in a greenhouse located at a Cwa climate type in Piracicaba (SP), Brazil (22°42’S; 47°37’W; 541 m altitude). The experiment was arranged in completely randomized block design composed of three types of seedlings (ungrafted hybrid, hybrid grafted onto rootstock cultivar Keeper and hybrid grafted onto rootstock cultivar Shelper) and two environments related to light condition (LED supplemental light and natural light as control). The LED devices were placed horizontally at 15 cm from the plants and at 1,5 m height from the floor. The LEDs emitted a photon flux of 220 µmol m-2 s-1 by red light (80%) with a peak wavelength of 662 nm and blue light (20%) with a peak wavelength of 452 nm. Lighting was used for 12 h d-1 from 30 days after seedling transplanting until the end of the growth period. The air temperature and relative humidity (RH) were maintained at 23.5±4°C and 72±10% during the light period, respectively. At night, average temperature was 18.6±5°C and the RH was 90±5%. The LED-interlighting treatment increased in 40% the plant CO2 net assimilation rate compared to plants grown under natural light in the greenhouse. Plants grafted onto both rootstocks had higher CO2 net assimilation rate (µmol CO2 m-2 s-1), apparent carboxylation efficiency (µmol CO2 mol air-1) and apparent electron transport rate (µmol electrons m-2 s-1) than non-grafted ones. The early yield increased 11.6% and 24% in response to LED-interlighting and grafting, respectively. The commercial yield also increased with LED light at rate of 13% but did not enhance with grafting. Postharvest quality parameters as titratable acidity, total soluble solids and shelf life were not affected by the LED light supplementation. Our study shows that even in tropical climate conditions LED-interlighting can be used as a tool to improve commercial cucumber production.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-05362021000100086
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-05362021000100086
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s0102-0536-20210113
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Horticultura
publisher.none.fl_str_mv Associação Brasileira de Horticultura
dc.source.none.fl_str_mv Horticultura Brasileira v.39 n.1 2021
reponame:Horticultura Brasileira
instname:Associação Brasileira de Horticultura (ABH)
instacron:ABH
instname_str Associação Brasileira de Horticultura (ABH)
instacron_str ABH
institution ABH
reponame_str Horticultura Brasileira
collection Horticultura Brasileira
repository.name.fl_str_mv Horticultura Brasileira - Associação Brasileira de Horticultura (ABH)
repository.mail.fl_str_mv ||hortbras@gmail.com
_version_ 1754213084702965760