Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700046 |
Resumo: | The processing of bulk metals through the application of severe plastic deformation leads to significant grain refinement and a consequent strengthening of the material. High-pressure torsion (HPT) generally refers to the processing of disk samples and this technique is especially effective in producing extremely small grains. Recently, new experiments were conducted in which disks of two different alloys, based on aluminum and magnesium, were stacked together and then processed by HPT for up to 20 turns at room temperature. Analysis after processing revealed the formation of a multi-layered structure in the central region of the disks but with a true nanoscale microstructure containing different types of intermetallic compounds within an Al matrix leading to the formation of metal matrix nanocomposites at the disk edges. Measurements showed a lowering of density at the disk edges, thereby confirming the potential for using HPT to fabricate materials with exceptionally high strength-to-weight ratios. |
id |
ABMABCABPOL-1_15b03582c222b3ec450f0a9d942f16d7 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392017000700046 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix CompositesAl-Mgdiffusion bondinghardnesshigh-pressure torsionmetal-matrix nanocompositeThe processing of bulk metals through the application of severe plastic deformation leads to significant grain refinement and a consequent strengthening of the material. High-pressure torsion (HPT) generally refers to the processing of disk samples and this technique is especially effective in producing extremely small grains. Recently, new experiments were conducted in which disks of two different alloys, based on aluminum and magnesium, were stacked together and then processed by HPT for up to 20 turns at room temperature. Analysis after processing revealed the formation of a multi-layered structure in the central region of the disks but with a true nanoscale microstructure containing different types of intermetallic compounds within an Al matrix leading to the formation of metal matrix nanocomposites at the disk edges. Measurements showed a lowering of density at the disk edges, thereby confirming the potential for using HPT to fabricate materials with exceptionally high strength-to-weight ratios.ABM, ABC, ABPol2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700046Materials Research v.20 suppl.1 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2017-0218info:eu-repo/semantics/openAccessKawasaki,MegumiLangdon,Terence G.eng2018-02-16T00:00:00Zoai:scielo:S1516-14392017000700046Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-02-16T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites |
title |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites |
spellingShingle |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites Kawasaki,Megumi Al-Mg diffusion bonding hardness high-pressure torsion metal-matrix nanocomposite |
title_short |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites |
title_full |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites |
title_fullStr |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites |
title_full_unstemmed |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites |
title_sort |
Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites |
author |
Kawasaki,Megumi |
author_facet |
Kawasaki,Megumi Langdon,Terence G. |
author_role |
author |
author2 |
Langdon,Terence G. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kawasaki,Megumi Langdon,Terence G. |
dc.subject.por.fl_str_mv |
Al-Mg diffusion bonding hardness high-pressure torsion metal-matrix nanocomposite |
topic |
Al-Mg diffusion bonding hardness high-pressure torsion metal-matrix nanocomposite |
description |
The processing of bulk metals through the application of severe plastic deformation leads to significant grain refinement and a consequent strengthening of the material. High-pressure torsion (HPT) generally refers to the processing of disk samples and this technique is especially effective in producing extremely small grains. Recently, new experiments were conducted in which disks of two different alloys, based on aluminum and magnesium, were stacked together and then processed by HPT for up to 20 turns at room temperature. Analysis after processing revealed the formation of a multi-layered structure in the central region of the disks but with a true nanoscale microstructure containing different types of intermetallic compounds within an Al matrix leading to the formation of metal matrix nanocomposites at the disk edges. Measurements showed a lowering of density at the disk edges, thereby confirming the potential for using HPT to fabricate materials with exceptionally high strength-to-weight ratios. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700046 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700046 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2017-0218 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.20 suppl.1 2017 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212671601770496 |