Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392005000200019 |
Resumo: | Research in the preparation of ceramics from polymeric precursors is giving rise to increased interest in ceramic technology because it allows the use of several promising polymer forming techniques. In this work ceramic composite pieces were obtained by pyrolysis of a compacted mixture of a polysiloxane resin and alumina/silicon powder. The mixture consists of 60 vol% of the polymer phase and 40 vol% of the filler in a 1:1 ratio for alumina/silicon, which was hot pressed to crosslink the polymer, thus forming a compact body. This green body was trimmed into different geometries and pyrolised in nitrogen atmosphere at temperatures up to 1600 °C. X-ray diffraction analysis indicated the formation of phases such as mullite and Si2ON2 during pyrolysis, that result from reactions between fillers, polymer decomposition products and nitrogen atmosphere. The porosity was found to be less than 20% and the mass loss around 10%. The complex geometry was maintained after pyrolysis and shrinkage was approximately 8%, proving pyrolisis to be a suitable process to form near-net-shaped bulk ceramic components. |
id |
ABMABCABPOL-1_18355874621bd833036421d87f90412b |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392005000200019 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixturespolymer derevid ceramicAFCOPpolymer precursorcompositeResearch in the preparation of ceramics from polymeric precursors is giving rise to increased interest in ceramic technology because it allows the use of several promising polymer forming techniques. In this work ceramic composite pieces were obtained by pyrolysis of a compacted mixture of a polysiloxane resin and alumina/silicon powder. The mixture consists of 60 vol% of the polymer phase and 40 vol% of the filler in a 1:1 ratio for alumina/silicon, which was hot pressed to crosslink the polymer, thus forming a compact body. This green body was trimmed into different geometries and pyrolised in nitrogen atmosphere at temperatures up to 1600 °C. X-ray diffraction analysis indicated the formation of phases such as mullite and Si2ON2 during pyrolysis, that result from reactions between fillers, polymer decomposition products and nitrogen atmosphere. The porosity was found to be less than 20% and the mass loss around 10%. The complex geometry was maintained after pyrolysis and shrinkage was approximately 8%, proving pyrolisis to be a suitable process to form near-net-shaped bulk ceramic components.ABM, ABC, ABPol2005-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392005000200019Materials Research v.8 n.2 2005reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392005000200019info:eu-repo/semantics/openAccessRocha,Rosa Maria daGreil,PeterBressiani,José CarlosBressiani,Ana Helena de Almeidaeng2006-02-06T00:00:00Zoai:scielo:S1516-14392005000200019Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2006-02-06T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures |
title |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures |
spellingShingle |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures Rocha,Rosa Maria da polymer derevid ceramic AFCOP polymer precursor composite |
title_short |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures |
title_full |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures |
title_fullStr |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures |
title_full_unstemmed |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures |
title_sort |
Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures |
author |
Rocha,Rosa Maria da |
author_facet |
Rocha,Rosa Maria da Greil,Peter Bressiani,José Carlos Bressiani,Ana Helena de Almeida |
author_role |
author |
author2 |
Greil,Peter Bressiani,José Carlos Bressiani,Ana Helena de Almeida |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rocha,Rosa Maria da Greil,Peter Bressiani,José Carlos Bressiani,Ana Helena de Almeida |
dc.subject.por.fl_str_mv |
polymer derevid ceramic AFCOP polymer precursor composite |
topic |
polymer derevid ceramic AFCOP polymer precursor composite |
description |
Research in the preparation of ceramics from polymeric precursors is giving rise to increased interest in ceramic technology because it allows the use of several promising polymer forming techniques. In this work ceramic composite pieces were obtained by pyrolysis of a compacted mixture of a polysiloxane resin and alumina/silicon powder. The mixture consists of 60 vol% of the polymer phase and 40 vol% of the filler in a 1:1 ratio for alumina/silicon, which was hot pressed to crosslink the polymer, thus forming a compact body. This green body was trimmed into different geometries and pyrolised in nitrogen atmosphere at temperatures up to 1600 °C. X-ray diffraction analysis indicated the formation of phases such as mullite and Si2ON2 during pyrolysis, that result from reactions between fillers, polymer decomposition products and nitrogen atmosphere. The porosity was found to be less than 20% and the mass loss around 10%. The complex geometry was maintained after pyrolysis and shrinkage was approximately 8%, proving pyrolisis to be a suitable process to form near-net-shaped bulk ceramic components. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392005000200019 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392005000200019 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392005000200019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.8 n.2 2005 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212658082480128 |