Effect of tire rubber particles on crack propagation in cement paste
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392006000300011 |
Resumo: | Tire rubber particles (NaOH-treated and untreated) were investigated as possible crack stabilizer and toughness enhancer when added to cement paste through in situ crack propagation measurements using two different types of cement, type I/II and an Interground polypropylene Fiber Cement (IFC). Crack deflection and crack bridging were observed in specimens with untreated rubber in cement type I/II. Crack tip mechanisms associated with crack pinning and acrack arrest were present in type I/II cement and IFC with treated rubber particles. Crack tip mechanisms in IFC with treated rubber lead to the increase in CMOD at the ultimate load level. Crack wake mechanisms in IFC with untreated or treated rubber lead to strain hardening and strain softening behavior. Crack wake bridging mechanisms were replaced by multiple cracking mechanisms in the IFC specimens with treated rubber. The IFC specimens with untreated rubber inclusions provided the best results with respect to toughness enhancement. |
id |
ABMABCABPOL-1_209f1c67e72af8a655e787ec39eca063 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392006000300011 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Effect of tire rubber particles on crack propagation in cement pastetire rubbercement compositescrack propagationtoughnessTire rubber particles (NaOH-treated and untreated) were investigated as possible crack stabilizer and toughness enhancer when added to cement paste through in situ crack propagation measurements using two different types of cement, type I/II and an Interground polypropylene Fiber Cement (IFC). Crack deflection and crack bridging were observed in specimens with untreated rubber in cement type I/II. Crack tip mechanisms associated with crack pinning and acrack arrest were present in type I/II cement and IFC with treated rubber particles. Crack tip mechanisms in IFC with treated rubber lead to the increase in CMOD at the ultimate load level. Crack wake mechanisms in IFC with untreated or treated rubber lead to strain hardening and strain softening behavior. Crack wake bridging mechanisms were replaced by multiple cracking mechanisms in the IFC specimens with treated rubber. The IFC specimens with untreated rubber inclusions provided the best results with respect to toughness enhancement.ABM, ABC, ABPol2006-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392006000300011Materials Research v.9 n.3 2006reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392006000300011info:eu-repo/semantics/openAccessSegre,NadiaOstertag,ClaudiaMonteiro,Paulo José Melaragnoeng2006-10-19T00:00:00Zoai:scielo:S1516-14392006000300011Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2006-10-19T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Effect of tire rubber particles on crack propagation in cement paste |
title |
Effect of tire rubber particles on crack propagation in cement paste |
spellingShingle |
Effect of tire rubber particles on crack propagation in cement paste Segre,Nadia tire rubber cement composites crack propagation toughness |
title_short |
Effect of tire rubber particles on crack propagation in cement paste |
title_full |
Effect of tire rubber particles on crack propagation in cement paste |
title_fullStr |
Effect of tire rubber particles on crack propagation in cement paste |
title_full_unstemmed |
Effect of tire rubber particles on crack propagation in cement paste |
title_sort |
Effect of tire rubber particles on crack propagation in cement paste |
author |
Segre,Nadia |
author_facet |
Segre,Nadia Ostertag,Claudia Monteiro,Paulo José Melaragno |
author_role |
author |
author2 |
Ostertag,Claudia Monteiro,Paulo José Melaragno |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Segre,Nadia Ostertag,Claudia Monteiro,Paulo José Melaragno |
dc.subject.por.fl_str_mv |
tire rubber cement composites crack propagation toughness |
topic |
tire rubber cement composites crack propagation toughness |
description |
Tire rubber particles (NaOH-treated and untreated) were investigated as possible crack stabilizer and toughness enhancer when added to cement paste through in situ crack propagation measurements using two different types of cement, type I/II and an Interground polypropylene Fiber Cement (IFC). Crack deflection and crack bridging were observed in specimens with untreated rubber in cement type I/II. Crack tip mechanisms associated with crack pinning and acrack arrest were present in type I/II cement and IFC with treated rubber particles. Crack tip mechanisms in IFC with treated rubber lead to the increase in CMOD at the ultimate load level. Crack wake mechanisms in IFC with untreated or treated rubber lead to strain hardening and strain softening behavior. Crack wake bridging mechanisms were replaced by multiple cracking mechanisms in the IFC specimens with treated rubber. The IFC specimens with untreated rubber inclusions provided the best results with respect to toughness enhancement. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392006000300011 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392006000300011 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392006000300011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.9 n.3 2006 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212658469404672 |