Stabilization of electric-arc furnace dust in concrete
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400014 |
Resumo: | Electric-arc furnace dust (EAFD) is a by-product of steel production and recycling. This fine-grained material contains high amounts of zinc and iron as well as significant amounts of potentially toxic elements such as lead, cadmium and chromium. Therefore, the treatment and stabilization of this industrial residue is necessary. Concrete is a well-known suitable environment for stabilization/solidification of materials which have leachable elements in need of fixation. The effect of the EAFD content on the mechanical and chemical performance of Portland cement concrete is investigated in this paper. The effect of the EAFD content on the setting time of cement slurry was also analyzed. The axial compressive strength of the concrete samples increases with the EAFD addition in the range of 10 to 20 wt. (%) EAFD; also the tensile strength increases with the EAFD addition. An increase in EAFD content significantly increases the setting time of the concrete. The acetic acid leaching and water solubilization tests indicate low mobility of the potentially toxic elements from the EAFD concrete composite. The results of the immersion tests show that the addition of EAFD to the concrete seems to reduce chloride penetration, which may help prevent pitting corrosion in reinforced concrete. |
id |
ABMABCABPOL-1_3056e23bc251b62f5406581cc1cc53fe |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392010000400014 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Stabilization of electric-arc furnace dust in concreteelectric-arc furnace dustleachingcement matrixchloridediffusionElectric-arc furnace dust (EAFD) is a by-product of steel production and recycling. This fine-grained material contains high amounts of zinc and iron as well as significant amounts of potentially toxic elements such as lead, cadmium and chromium. Therefore, the treatment and stabilization of this industrial residue is necessary. Concrete is a well-known suitable environment for stabilization/solidification of materials which have leachable elements in need of fixation. The effect of the EAFD content on the mechanical and chemical performance of Portland cement concrete is investigated in this paper. The effect of the EAFD content on the setting time of cement slurry was also analyzed. The axial compressive strength of the concrete samples increases with the EAFD addition in the range of 10 to 20 wt. (%) EAFD; also the tensile strength increases with the EAFD addition. An increase in EAFD content significantly increases the setting time of the concrete. The acetic acid leaching and water solubilization tests indicate low mobility of the potentially toxic elements from the EAFD concrete composite. The results of the immersion tests show that the addition of EAFD to the concrete seems to reduce chloride penetration, which may help prevent pitting corrosion in reinforced concrete.ABM, ABC, ABPol2010-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400014Materials Research v.13 n.4 2010reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392010000400014info:eu-repo/semantics/openAccessSouza,Carlos Alberto Caldas deMachado,Alexandre TeixeiraLima,Luiz Rogério Pinho de AndradeCardoso,Roberto Jorge Câmaraeng2011-01-24T00:00:00Zoai:scielo:S1516-14392010000400014Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2011-01-24T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Stabilization of electric-arc furnace dust in concrete |
title |
Stabilization of electric-arc furnace dust in concrete |
spellingShingle |
Stabilization of electric-arc furnace dust in concrete Souza,Carlos Alberto Caldas de electric-arc furnace dust leaching cement matrix chloride diffusion |
title_short |
Stabilization of electric-arc furnace dust in concrete |
title_full |
Stabilization of electric-arc furnace dust in concrete |
title_fullStr |
Stabilization of electric-arc furnace dust in concrete |
title_full_unstemmed |
Stabilization of electric-arc furnace dust in concrete |
title_sort |
Stabilization of electric-arc furnace dust in concrete |
author |
Souza,Carlos Alberto Caldas de |
author_facet |
Souza,Carlos Alberto Caldas de Machado,Alexandre Teixeira Lima,Luiz Rogério Pinho de Andrade Cardoso,Roberto Jorge Câmara |
author_role |
author |
author2 |
Machado,Alexandre Teixeira Lima,Luiz Rogério Pinho de Andrade Cardoso,Roberto Jorge Câmara |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Souza,Carlos Alberto Caldas de Machado,Alexandre Teixeira Lima,Luiz Rogério Pinho de Andrade Cardoso,Roberto Jorge Câmara |
dc.subject.por.fl_str_mv |
electric-arc furnace dust leaching cement matrix chloride diffusion |
topic |
electric-arc furnace dust leaching cement matrix chloride diffusion |
description |
Electric-arc furnace dust (EAFD) is a by-product of steel production and recycling. This fine-grained material contains high amounts of zinc and iron as well as significant amounts of potentially toxic elements such as lead, cadmium and chromium. Therefore, the treatment and stabilization of this industrial residue is necessary. Concrete is a well-known suitable environment for stabilization/solidification of materials which have leachable elements in need of fixation. The effect of the EAFD content on the mechanical and chemical performance of Portland cement concrete is investigated in this paper. The effect of the EAFD content on the setting time of cement slurry was also analyzed. The axial compressive strength of the concrete samples increases with the EAFD addition in the range of 10 to 20 wt. (%) EAFD; also the tensile strength increases with the EAFD addition. An increase in EAFD content significantly increases the setting time of the concrete. The acetic acid leaching and water solubilization tests indicate low mobility of the potentially toxic elements from the EAFD concrete composite. The results of the immersion tests show that the addition of EAFD to the concrete seems to reduce chloride penetration, which may help prevent pitting corrosion in reinforced concrete. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400014 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392010000400014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.13 n.4 2010 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212659713015808 |