Martensite’s Logistic Paradigm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000300230 |
Resumo: | Abstract This work introduces a deterministic approach to the martensite transformation curve. Martensite is a nucleation-controlled transformation that has two characteristics: autocatalysis and auto-accommodation. Only a small number of martensite units initially form owing to primary nucleation. These new units may cause the transformation of other units by autocatalysis. We call this kind of transformation chained autocatalysis. Moreover, as the transformation progresses, the auto-accommodation influences the arrangement of new units. This work assumes that the transformation-saturation relates to the exhaustion of the chained autocatalysis, which underlines the microstructure. To compare, we considered the KJMA’s extended-transformation concept that implies assuming exhaustion by impingement. Data from isothermal martensite transformations and anisothermal martensite transformations are used to validate the model. Those data comprised different grain sizes and carbon contents. The model is based upon Verhulst’s logistic concept. We propose that the model's high fitting-capability stems from its deterministic aspect combined with martensite’s self-similarity. Additionally, we suggest that chained autocatalysis controls the rate of martensite transformation. Therefore, the relaxation of transformation strains by plasticity assisted by mutual accommodation determines the transformation's martensite volume in the absence of post-propagation coarsening/coalescence. |
id |
ABMABCABPOL-1_35413df8c67487c7e6cbf7bfb4f588b9 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392021000300230 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Martensite’s Logistic ParadigmMartensitic transformationsmicrostructurelogistic equationanalytical methodsAvrami’s equationAbstract This work introduces a deterministic approach to the martensite transformation curve. Martensite is a nucleation-controlled transformation that has two characteristics: autocatalysis and auto-accommodation. Only a small number of martensite units initially form owing to primary nucleation. These new units may cause the transformation of other units by autocatalysis. We call this kind of transformation chained autocatalysis. Moreover, as the transformation progresses, the auto-accommodation influences the arrangement of new units. This work assumes that the transformation-saturation relates to the exhaustion of the chained autocatalysis, which underlines the microstructure. To compare, we considered the KJMA’s extended-transformation concept that implies assuming exhaustion by impingement. Data from isothermal martensite transformations and anisothermal martensite transformations are used to validate the model. Those data comprised different grain sizes and carbon contents. The model is based upon Verhulst’s logistic concept. We propose that the model's high fitting-capability stems from its deterministic aspect combined with martensite’s self-similarity. Additionally, we suggest that chained autocatalysis controls the rate of martensite transformation. Therefore, the relaxation of transformation strains by plasticity assisted by mutual accommodation determines the transformation's martensite volume in the absence of post-propagation coarsening/coalescence.ABM, ABC, ABPol2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000300230Materials Research v.24 n.3 2021reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2020-0370info:eu-repo/semantics/openAccessGuimarães,José Roberto CostaRios,Paulo RangelAlves,André Luiz Moraeseng2021-06-28T00:00:00Zoai:scielo:S1516-14392021000300230Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2021-06-28T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Martensite’s Logistic Paradigm |
title |
Martensite’s Logistic Paradigm |
spellingShingle |
Martensite’s Logistic Paradigm Guimarães,José Roberto Costa Martensitic transformations microstructure logistic equation analytical methods Avrami’s equation |
title_short |
Martensite’s Logistic Paradigm |
title_full |
Martensite’s Logistic Paradigm |
title_fullStr |
Martensite’s Logistic Paradigm |
title_full_unstemmed |
Martensite’s Logistic Paradigm |
title_sort |
Martensite’s Logistic Paradigm |
author |
Guimarães,José Roberto Costa |
author_facet |
Guimarães,José Roberto Costa Rios,Paulo Rangel Alves,André Luiz Moraes |
author_role |
author |
author2 |
Rios,Paulo Rangel Alves,André Luiz Moraes |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Guimarães,José Roberto Costa Rios,Paulo Rangel Alves,André Luiz Moraes |
dc.subject.por.fl_str_mv |
Martensitic transformations microstructure logistic equation analytical methods Avrami’s equation |
topic |
Martensitic transformations microstructure logistic equation analytical methods Avrami’s equation |
description |
Abstract This work introduces a deterministic approach to the martensite transformation curve. Martensite is a nucleation-controlled transformation that has two characteristics: autocatalysis and auto-accommodation. Only a small number of martensite units initially form owing to primary nucleation. These new units may cause the transformation of other units by autocatalysis. We call this kind of transformation chained autocatalysis. Moreover, as the transformation progresses, the auto-accommodation influences the arrangement of new units. This work assumes that the transformation-saturation relates to the exhaustion of the chained autocatalysis, which underlines the microstructure. To compare, we considered the KJMA’s extended-transformation concept that implies assuming exhaustion by impingement. Data from isothermal martensite transformations and anisothermal martensite transformations are used to validate the model. Those data comprised different grain sizes and carbon contents. The model is based upon Verhulst’s logistic concept. We propose that the model's high fitting-capability stems from its deterministic aspect combined with martensite’s self-similarity. Additionally, we suggest that chained autocatalysis controls the rate of martensite transformation. Therefore, the relaxation of transformation strains by plasticity assisted by mutual accommodation determines the transformation's martensite volume in the absence of post-propagation coarsening/coalescence. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000300230 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000300230 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2020-0370 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.24 n.3 2021 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212678737330176 |