Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect

Detalhes bibliográficos
Autor(a) principal: Al-Samarai,Riyadh A.
Data de Publicação: 2018
Outros Autores: Al-Douri,Y.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000400205
Resumo: Lubricated pin-on-disk sliding wear tests were performed on applied to Al-0.1Mg-0.35Ni-Si Alloy by using the spray coating method has been investigated. Different loads were 5, 10, and 15 N at a sliding velocity, 1.32 m/s at room temperature and 60% relative humidity. The surfaces were analyzed by using X-ray diffraction the residual (XRD), energy dispersive (EDS), scanning of (SEM) and (AFM), respectively. The results have showed that the thickness of Cr2O3 coating was significantly related under the identical cold spray condition. These methods have contributed much of the understanding of quality and properties of surfaces. The (Cr2O3) coating has great potential as a wear-resistant. The hardness increased from 102 ± 5 HV to 116.4 ± 2.5 HV at coating thickness 45 µm and friction coefficient reduced from 0.29 to 0.24; and the wear rate was about 2.11X10-13 m3N-1m-1 while hardness was increased from 102 ± 5 HV to 108 ± 3.5 HV at coating thickness 15 µm. The friction reduced from 0.31 to 0.29 at same coating thickness alloys, and the wear rate was about 2.73X10-13 m3N-1m-1. The tribological properties of Cr2O3 coating have exhibited low friction and beneficial to improve the adhesion which was clear on worn surfaces of Cr2O3 coating. Crack, powder flocculation and powder formation are caused by the wear mode of the surface. Brittle fracture was found; while, adhesion and oxidation are the main mechanism of wear during the test.
id ABMABCABPOL-1_3a8866e7b19651a0978d3fb0e53aace3
oai_identifier_str oai:scielo:S1516-14392018000400205
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 EffectCr2O3CoatingsFrictionWearLubricated pin-on-disk sliding wear tests were performed on applied to Al-0.1Mg-0.35Ni-Si Alloy by using the spray coating method has been investigated. Different loads were 5, 10, and 15 N at a sliding velocity, 1.32 m/s at room temperature and 60% relative humidity. The surfaces were analyzed by using X-ray diffraction the residual (XRD), energy dispersive (EDS), scanning of (SEM) and (AFM), respectively. The results have showed that the thickness of Cr2O3 coating was significantly related under the identical cold spray condition. These methods have contributed much of the understanding of quality and properties of surfaces. The (Cr2O3) coating has great potential as a wear-resistant. The hardness increased from 102 ± 5 HV to 116.4 ± 2.5 HV at coating thickness 45 µm and friction coefficient reduced from 0.29 to 0.24; and the wear rate was about 2.11X10-13 m3N-1m-1 while hardness was increased from 102 ± 5 HV to 108 ± 3.5 HV at coating thickness 15 µm. The friction reduced from 0.31 to 0.29 at same coating thickness alloys, and the wear rate was about 2.73X10-13 m3N-1m-1. The tribological properties of Cr2O3 coating have exhibited low friction and beneficial to improve the adhesion which was clear on worn surfaces of Cr2O3 coating. Crack, powder flocculation and powder formation are caused by the wear mode of the surface. Brittle fracture was found; while, adhesion and oxidation are the main mechanism of wear during the test.ABM, ABC, ABPol2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000400205Materials Research v.21 n.4 2018reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2017-0938info:eu-repo/semantics/openAccessAl-Samarai,Riyadh A.Al-Douri,Y.eng2018-05-18T00:00:00Zoai:scielo:S1516-14392018000400205Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-05-18T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect
title Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect
spellingShingle Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect
Al-Samarai,Riyadh A.
Cr2O3
Coatings
Friction
Wear
title_short Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect
title_full Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect
title_fullStr Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect
title_full_unstemmed Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect
title_sort Lubricated Conditions Imposed on Coating Multi-layer on Wear Resistance Under Cr2O3 Effect
author Al-Samarai,Riyadh A.
author_facet Al-Samarai,Riyadh A.
Al-Douri,Y.
author_role author
author2 Al-Douri,Y.
author2_role author
dc.contributor.author.fl_str_mv Al-Samarai,Riyadh A.
Al-Douri,Y.
dc.subject.por.fl_str_mv Cr2O3
Coatings
Friction
Wear
topic Cr2O3
Coatings
Friction
Wear
description Lubricated pin-on-disk sliding wear tests were performed on applied to Al-0.1Mg-0.35Ni-Si Alloy by using the spray coating method has been investigated. Different loads were 5, 10, and 15 N at a sliding velocity, 1.32 m/s at room temperature and 60% relative humidity. The surfaces were analyzed by using X-ray diffraction the residual (XRD), energy dispersive (EDS), scanning of (SEM) and (AFM), respectively. The results have showed that the thickness of Cr2O3 coating was significantly related under the identical cold spray condition. These methods have contributed much of the understanding of quality and properties of surfaces. The (Cr2O3) coating has great potential as a wear-resistant. The hardness increased from 102 ± 5 HV to 116.4 ± 2.5 HV at coating thickness 45 µm and friction coefficient reduced from 0.29 to 0.24; and the wear rate was about 2.11X10-13 m3N-1m-1 while hardness was increased from 102 ± 5 HV to 108 ± 3.5 HV at coating thickness 15 µm. The friction reduced from 0.31 to 0.29 at same coating thickness alloys, and the wear rate was about 2.73X10-13 m3N-1m-1. The tribological properties of Cr2O3 coating have exhibited low friction and beneficial to improve the adhesion which was clear on worn surfaces of Cr2O3 coating. Crack, powder flocculation and powder formation are caused by the wear mode of the surface. Brittle fracture was found; while, adhesion and oxidation are the main mechanism of wear during the test.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000400205
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000400205
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2017-0938
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.21 n.4 2018
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212674216919040