Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000100068 |
Resumo: | Mechanical properties and performance of metallic materials depend on their microstructures. In order to develop engineering materials that match prescribed criteria and to enable design with multifunctional materials, it is essential to be able to predict their microstructural patterns, such as size, shape, and spacing of the dendritic structures observed in solidified metals. In the cases of metallic alloys, which present dendritic structure, the mechanical properties of foundry products depend mainly on the primary- and secondary-arm. Therefore, it is important, in a computational simulation of the solidification processes, to use reliable methods to correlate the thermal parameters with secondary-dendrite arm spacing. This study presents a numerical model for prediction of secondary-arm spacing as a function of thermal parameters (cooling rates and local solidification time). Spacing of the arms for a binary alloy is numerically predicted using a phase-field model. Secondary dendrites calculated by phase-field model, they are similar to the ones found in experiments investigation of solidification in Al-Cu alloys. Arm spacing predicted in the present work, when compared with the experimental results, showed good agreement. Its estimation takes place at the late stage of growth. The effect of physical properties (partition coefficient (ke), diffusion in the liquid (DL) and diffusion in the solid phase (DS)) on secondary-arm spacing is systematically investigated by phase-field model. With the help of numerical results for Al-4.5wt%Cu alloy, the applicability of the phase-field model to the estimation of secondary-dendrite arm spacing during unidirectional solidification is demonstrated. |
id |
ABMABCABPOL-1_40293af2d4ba4151f5ef15ab234242ab |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392017000100068 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional SolidificationAl-CudendritePhase-Field methodsimulationsolidificationMechanical properties and performance of metallic materials depend on their microstructures. In order to develop engineering materials that match prescribed criteria and to enable design with multifunctional materials, it is essential to be able to predict their microstructural patterns, such as size, shape, and spacing of the dendritic structures observed in solidified metals. In the cases of metallic alloys, which present dendritic structure, the mechanical properties of foundry products depend mainly on the primary- and secondary-arm. Therefore, it is important, in a computational simulation of the solidification processes, to use reliable methods to correlate the thermal parameters with secondary-dendrite arm spacing. This study presents a numerical model for prediction of secondary-arm spacing as a function of thermal parameters (cooling rates and local solidification time). Spacing of the arms for a binary alloy is numerically predicted using a phase-field model. Secondary dendrites calculated by phase-field model, they are similar to the ones found in experiments investigation of solidification in Al-Cu alloys. Arm spacing predicted in the present work, when compared with the experimental results, showed good agreement. Its estimation takes place at the late stage of growth. The effect of physical properties (partition coefficient (ke), diffusion in the liquid (DL) and diffusion in the solid phase (DS)) on secondary-arm spacing is systematically investigated by phase-field model. With the help of numerical results for Al-4.5wt%Cu alloy, the applicability of the phase-field model to the estimation of secondary-dendrite arm spacing during unidirectional solidification is demonstrated.ABM, ABC, ABPol2017-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000100068Materials Research v.20 n.1 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2015-0150info:eu-repo/semantics/openAccessFerreira,Alexandre FurtadoCastro,José Adilson deFerreira,Leonardo de Olivéeng2017-03-22T00:00:00Zoai:scielo:S1516-14392017000100068Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2017-03-22T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification |
title |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification |
spellingShingle |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification Ferreira,Alexandre Furtado Al-Cu dendrite Phase-Field method simulation solidification |
title_short |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification |
title_full |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification |
title_fullStr |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification |
title_full_unstemmed |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification |
title_sort |
Predicting Secondary-Dendrite Arm Spacing of the Al-4.5wt%Cu Alloy During Unidirectional Solidification |
author |
Ferreira,Alexandre Furtado |
author_facet |
Ferreira,Alexandre Furtado Castro,José Adilson de Ferreira,Leonardo de Olivé |
author_role |
author |
author2 |
Castro,José Adilson de Ferreira,Leonardo de Olivé |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreira,Alexandre Furtado Castro,José Adilson de Ferreira,Leonardo de Olivé |
dc.subject.por.fl_str_mv |
Al-Cu dendrite Phase-Field method simulation solidification |
topic |
Al-Cu dendrite Phase-Field method simulation solidification |
description |
Mechanical properties and performance of metallic materials depend on their microstructures. In order to develop engineering materials that match prescribed criteria and to enable design with multifunctional materials, it is essential to be able to predict their microstructural patterns, such as size, shape, and spacing of the dendritic structures observed in solidified metals. In the cases of metallic alloys, which present dendritic structure, the mechanical properties of foundry products depend mainly on the primary- and secondary-arm. Therefore, it is important, in a computational simulation of the solidification processes, to use reliable methods to correlate the thermal parameters with secondary-dendrite arm spacing. This study presents a numerical model for prediction of secondary-arm spacing as a function of thermal parameters (cooling rates and local solidification time). Spacing of the arms for a binary alloy is numerically predicted using a phase-field model. Secondary dendrites calculated by phase-field model, they are similar to the ones found in experiments investigation of solidification in Al-Cu alloys. Arm spacing predicted in the present work, when compared with the experimental results, showed good agreement. Its estimation takes place at the late stage of growth. The effect of physical properties (partition coefficient (ke), diffusion in the liquid (DL) and diffusion in the solid phase (DS)) on secondary-arm spacing is systematically investigated by phase-field model. With the help of numerical results for Al-4.5wt%Cu alloy, the applicability of the phase-field model to the estimation of secondary-dendrite arm spacing during unidirectional solidification is demonstrated. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000100068 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000100068 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2015-0150 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.20 n.1 2017 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212668811509760 |