Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study

Detalhes bibliográficos
Autor(a) principal: Ren,Junqiang
Data de Publicação: 2020
Outros Autores: Liu,Xitong, Lei,Qingfeng, Wang,Qi, Zhang,Xiaobo, Zhang,Xudong, Lu,Xuefeng, Xue,Hongtao, Ding,Yutian
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000100218
Resumo: Abstract The compressive and tensile behaviors in a Ti nanopillar with a biphasic hexagonal close-packed (HCP) /face-centered cubic (FCC) phase boundary are theoretically researched using classic molecular dynamic simulation. The results indicate that the HCP/FCC interface and free surface of the nanopillar are the sources of dislocation nucleation. The plastic deformation is mainly concentrated in the metastable FCC phase of the biphasic nanopillar. Under compressive loading, a reverse phase transformation of FCC to the HCP phase is induced by the dislocation glide of multiple Shockley partial dislocations 1 2 < 1 ¯ 21 >under compressive loading. However, for tensile loading a large number of Lomer-Cottrell sessile dislocations and stacking fault nets are formed when the partial dislocations react, which leads to an increase in stress. The formation mechanism of a Lomer-Cottrell sessile dislocation is also studied in detail. Shockley partial dislocations are the dominant mode of plastic deformation behaviors in the metastable FCC phase of the biphasic nanopillar.
id ABMABCABPOL-1_406084d21a2ccc570a4bb80f84cdf73b
oai_identifier_str oai:scielo:S1516-14392020000100218
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic StudyMolecular dynamics simulationTitaniumDislocationsBiphasic nanopillarPhase transformationsAbstract The compressive and tensile behaviors in a Ti nanopillar with a biphasic hexagonal close-packed (HCP) /face-centered cubic (FCC) phase boundary are theoretically researched using classic molecular dynamic simulation. The results indicate that the HCP/FCC interface and free surface of the nanopillar are the sources of dislocation nucleation. The plastic deformation is mainly concentrated in the metastable FCC phase of the biphasic nanopillar. Under compressive loading, a reverse phase transformation of FCC to the HCP phase is induced by the dislocation glide of multiple Shockley partial dislocations 1 2 < 1 ¯ 21 >under compressive loading. However, for tensile loading a large number of Lomer-Cottrell sessile dislocations and stacking fault nets are formed when the partial dislocations react, which leads to an increase in stress. The formation mechanism of a Lomer-Cottrell sessile dislocation is also studied in detail. Shockley partial dislocations are the dominant mode of plastic deformation behaviors in the metastable FCC phase of the biphasic nanopillar.ABM, ABC, ABPol2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000100218Materials Research v.23 n.1 2020reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2019-0638info:eu-repo/semantics/openAccessRen,JunqiangLiu,XitongLei,QingfengWang,QiZhang,XiaoboZhang,XudongLu,XuefengXue,HongtaoDing,Yutianeng2020-04-15T00:00:00Zoai:scielo:S1516-14392020000100218Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2020-04-15T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
title Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
spellingShingle Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
Ren,Junqiang
Molecular dynamics simulation
Titanium
Dislocations
Biphasic nanopillar
Phase transformations
title_short Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
title_full Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
title_fullStr Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
title_full_unstemmed Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
title_sort Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
author Ren,Junqiang
author_facet Ren,Junqiang
Liu,Xitong
Lei,Qingfeng
Wang,Qi
Zhang,Xiaobo
Zhang,Xudong
Lu,Xuefeng
Xue,Hongtao
Ding,Yutian
author_role author
author2 Liu,Xitong
Lei,Qingfeng
Wang,Qi
Zhang,Xiaobo
Zhang,Xudong
Lu,Xuefeng
Xue,Hongtao
Ding,Yutian
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ren,Junqiang
Liu,Xitong
Lei,Qingfeng
Wang,Qi
Zhang,Xiaobo
Zhang,Xudong
Lu,Xuefeng
Xue,Hongtao
Ding,Yutian
dc.subject.por.fl_str_mv Molecular dynamics simulation
Titanium
Dislocations
Biphasic nanopillar
Phase transformations
topic Molecular dynamics simulation
Titanium
Dislocations
Biphasic nanopillar
Phase transformations
description Abstract The compressive and tensile behaviors in a Ti nanopillar with a biphasic hexagonal close-packed (HCP) /face-centered cubic (FCC) phase boundary are theoretically researched using classic molecular dynamic simulation. The results indicate that the HCP/FCC interface and free surface of the nanopillar are the sources of dislocation nucleation. The plastic deformation is mainly concentrated in the metastable FCC phase of the biphasic nanopillar. Under compressive loading, a reverse phase transformation of FCC to the HCP phase is induced by the dislocation glide of multiple Shockley partial dislocations 1 2 < 1 ¯ 21 >under compressive loading. However, for tensile loading a large number of Lomer-Cottrell sessile dislocations and stacking fault nets are formed when the partial dislocations react, which leads to an increase in stress. The formation mechanism of a Lomer-Cottrell sessile dislocation is also studied in detail. Shockley partial dislocations are the dominant mode of plastic deformation behaviors in the metastable FCC phase of the biphasic nanopillar.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000100218
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000100218
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2019-0638
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.23 n.1 2020
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212676882399232