Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000100218 |
Resumo: | Abstract The compressive and tensile behaviors in a Ti nanopillar with a biphasic hexagonal close-packed (HCP) /face-centered cubic (FCC) phase boundary are theoretically researched using classic molecular dynamic simulation. The results indicate that the HCP/FCC interface and free surface of the nanopillar are the sources of dislocation nucleation. The plastic deformation is mainly concentrated in the metastable FCC phase of the biphasic nanopillar. Under compressive loading, a reverse phase transformation of FCC to the HCP phase is induced by the dislocation glide of multiple Shockley partial dislocations 1 2 < 1 ¯ 21 >under compressive loading. However, for tensile loading a large number of Lomer-Cottrell sessile dislocations and stacking fault nets are formed when the partial dislocations react, which leads to an increase in stress. The formation mechanism of a Lomer-Cottrell sessile dislocation is also studied in detail. Shockley partial dislocations are the dominant mode of plastic deformation behaviors in the metastable FCC phase of the biphasic nanopillar. |
id |
ABMABCABPOL-1_406084d21a2ccc570a4bb80f84cdf73b |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392020000100218 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic StudyMolecular dynamics simulationTitaniumDislocationsBiphasic nanopillarPhase transformationsAbstract The compressive and tensile behaviors in a Ti nanopillar with a biphasic hexagonal close-packed (HCP) /face-centered cubic (FCC) phase boundary are theoretically researched using classic molecular dynamic simulation. The results indicate that the HCP/FCC interface and free surface of the nanopillar are the sources of dislocation nucleation. The plastic deformation is mainly concentrated in the metastable FCC phase of the biphasic nanopillar. Under compressive loading, a reverse phase transformation of FCC to the HCP phase is induced by the dislocation glide of multiple Shockley partial dislocations 1 2 < 1 ¯ 21 >under compressive loading. However, for tensile loading a large number of Lomer-Cottrell sessile dislocations and stacking fault nets are formed when the partial dislocations react, which leads to an increase in stress. The formation mechanism of a Lomer-Cottrell sessile dislocation is also studied in detail. Shockley partial dislocations are the dominant mode of plastic deformation behaviors in the metastable FCC phase of the biphasic nanopillar.ABM, ABC, ABPol2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000100218Materials Research v.23 n.1 2020reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2019-0638info:eu-repo/semantics/openAccessRen,JunqiangLiu,XitongLei,QingfengWang,QiZhang,XiaoboZhang,XudongLu,XuefengXue,HongtaoDing,Yutianeng2020-04-15T00:00:00Zoai:scielo:S1516-14392020000100218Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2020-04-15T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study |
title |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study |
spellingShingle |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study Ren,Junqiang Molecular dynamics simulation Titanium Dislocations Biphasic nanopillar Phase transformations |
title_short |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study |
title_full |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study |
title_fullStr |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study |
title_full_unstemmed |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study |
title_sort |
Deformation Behavior of Pure Titanium With a Rare HCP/FCC Boundary: An Atomistic Study |
author |
Ren,Junqiang |
author_facet |
Ren,Junqiang Liu,Xitong Lei,Qingfeng Wang,Qi Zhang,Xiaobo Zhang,Xudong Lu,Xuefeng Xue,Hongtao Ding,Yutian |
author_role |
author |
author2 |
Liu,Xitong Lei,Qingfeng Wang,Qi Zhang,Xiaobo Zhang,Xudong Lu,Xuefeng Xue,Hongtao Ding,Yutian |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Ren,Junqiang Liu,Xitong Lei,Qingfeng Wang,Qi Zhang,Xiaobo Zhang,Xudong Lu,Xuefeng Xue,Hongtao Ding,Yutian |
dc.subject.por.fl_str_mv |
Molecular dynamics simulation Titanium Dislocations Biphasic nanopillar Phase transformations |
topic |
Molecular dynamics simulation Titanium Dislocations Biphasic nanopillar Phase transformations |
description |
Abstract The compressive and tensile behaviors in a Ti nanopillar with a biphasic hexagonal close-packed (HCP) /face-centered cubic (FCC) phase boundary are theoretically researched using classic molecular dynamic simulation. The results indicate that the HCP/FCC interface and free surface of the nanopillar are the sources of dislocation nucleation. The plastic deformation is mainly concentrated in the metastable FCC phase of the biphasic nanopillar. Under compressive loading, a reverse phase transformation of FCC to the HCP phase is induced by the dislocation glide of multiple Shockley partial dislocations 1 2 < 1 ¯ 21 >under compressive loading. However, for tensile loading a large number of Lomer-Cottrell sessile dislocations and stacking fault nets are formed when the partial dislocations react, which leads to an increase in stress. The formation mechanism of a Lomer-Cottrell sessile dislocation is also studied in detail. Shockley partial dislocations are the dominant mode of plastic deformation behaviors in the metastable FCC phase of the biphasic nanopillar. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000100218 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000100218 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2019-0638 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.23 n.1 2020 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212676882399232 |