Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700262 |
Resumo: | Stainless steel and nickel alloy have high corrosion resistance in high-temperature environments due to the high Cr content present in their chemical composition, being widely used in components of nuclear reactors, petrochemical industries, etc. Through proper processes and procedures, it becomes possible to join these alloys. However, this union can generate detrimental factors in its performance, among them, the residual stresses. In this work, the residual stresses generated by the autogenous GTAW process, due to different interpass temperatures on the weld bead geometry, were analyzed by the Hole-Drilling technique in dissimilar welding joints of stainless steel AISI 316L and Inconel 718 alloy. In addition, the Vickers microhardness measurements were carried out to evaluate the hardness profile in the cross section of the weld bead covering base metal (BM), heat affect zone (HAZ) and weld metal (WM). We found that in the interface region between BM and HAZ of each dissimilar joint metal, residual stresses increased above 300 MPa, while hardness increased above 160 HV. |
id |
ABMABCABPOL-1_428c980b8f83c74285a977aa69c57ebf |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392019000700262 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW ProcessStainless Steel AISI 316LInconel 718Autogenous GTAWDissimilar JointsResidual StressHole-DrillingHardness.Stainless steel and nickel alloy have high corrosion resistance in high-temperature environments due to the high Cr content present in their chemical composition, being widely used in components of nuclear reactors, petrochemical industries, etc. Through proper processes and procedures, it becomes possible to join these alloys. However, this union can generate detrimental factors in its performance, among them, the residual stresses. In this work, the residual stresses generated by the autogenous GTAW process, due to different interpass temperatures on the weld bead geometry, were analyzed by the Hole-Drilling technique in dissimilar welding joints of stainless steel AISI 316L and Inconel 718 alloy. In addition, the Vickers microhardness measurements were carried out to evaluate the hardness profile in the cross section of the weld bead covering base metal (BM), heat affect zone (HAZ) and weld metal (WM). We found that in the interface region between BM and HAZ of each dissimilar joint metal, residual stresses increased above 300 MPa, while hardness increased above 160 HV.ABM, ABC, ABPol2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700262Materials Research v.22 suppl.1 2019reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2018-0844info:eu-repo/semantics/openAccessGomes,Diogo de AmorimCastro,José AdilsonXavier,Carlos RobertoLima,Carlos Augusto Cardosoeng2019-11-27T00:00:00Zoai:scielo:S1516-14392019000700262Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2019-11-27T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process |
title |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process |
spellingShingle |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process Gomes,Diogo de Amorim Stainless Steel AISI 316L Inconel 718 Autogenous GTAW Dissimilar Joints Residual Stress Hole-Drilling Hardness. |
title_short |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process |
title_full |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process |
title_fullStr |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process |
title_full_unstemmed |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process |
title_sort |
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process |
author |
Gomes,Diogo de Amorim |
author_facet |
Gomes,Diogo de Amorim Castro,José Adilson Xavier,Carlos Roberto Lima,Carlos Augusto Cardoso |
author_role |
author |
author2 |
Castro,José Adilson Xavier,Carlos Roberto Lima,Carlos Augusto Cardoso |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gomes,Diogo de Amorim Castro,José Adilson Xavier,Carlos Roberto Lima,Carlos Augusto Cardoso |
dc.subject.por.fl_str_mv |
Stainless Steel AISI 316L Inconel 718 Autogenous GTAW Dissimilar Joints Residual Stress Hole-Drilling Hardness. |
topic |
Stainless Steel AISI 316L Inconel 718 Autogenous GTAW Dissimilar Joints Residual Stress Hole-Drilling Hardness. |
description |
Stainless steel and nickel alloy have high corrosion resistance in high-temperature environments due to the high Cr content present in their chemical composition, being widely used in components of nuclear reactors, petrochemical industries, etc. Through proper processes and procedures, it becomes possible to join these alloys. However, this union can generate detrimental factors in its performance, among them, the residual stresses. In this work, the residual stresses generated by the autogenous GTAW process, due to different interpass temperatures on the weld bead geometry, were analyzed by the Hole-Drilling technique in dissimilar welding joints of stainless steel AISI 316L and Inconel 718 alloy. In addition, the Vickers microhardness measurements were carried out to evaluate the hardness profile in the cross section of the weld bead covering base metal (BM), heat affect zone (HAZ) and weld metal (WM). We found that in the interface region between BM and HAZ of each dissimilar joint metal, residual stresses increased above 300 MPa, while hardness increased above 160 HV. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700262 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700262 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2018-0844 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.22 suppl.1 2019 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212676148396032 |