Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process

Detalhes bibliográficos
Autor(a) principal: Gomes,Diogo de Amorim
Data de Publicação: 2019
Outros Autores: Castro,José Adilson, Xavier,Carlos Roberto, Lima,Carlos Augusto Cardoso
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700262
Resumo: Stainless steel and nickel alloy have high corrosion resistance in high-temperature environments due to the high Cr content present in their chemical composition, being widely used in components of nuclear reactors, petrochemical industries, etc. Through proper processes and procedures, it becomes possible to join these alloys. However, this union can generate detrimental factors in its performance, among them, the residual stresses. In this work, the residual stresses generated by the autogenous GTAW process, due to different interpass temperatures on the weld bead geometry, were analyzed by the Hole-Drilling technique in dissimilar welding joints of stainless steel AISI 316L and Inconel 718 alloy. In addition, the Vickers microhardness measurements were carried out to evaluate the hardness profile in the cross section of the weld bead covering base metal (BM), heat affect zone (HAZ) and weld metal (WM). We found that in the interface region between BM and HAZ of each dissimilar joint metal, residual stresses increased above 300 MPa, while hardness increased above 160 HV.
id ABMABCABPOL-1_428c980b8f83c74285a977aa69c57ebf
oai_identifier_str oai:scielo:S1516-14392019000700262
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW ProcessStainless Steel AISI 316LInconel 718Autogenous GTAWDissimilar JointsResidual StressHole-DrillingHardness.Stainless steel and nickel alloy have high corrosion resistance in high-temperature environments due to the high Cr content present in their chemical composition, being widely used in components of nuclear reactors, petrochemical industries, etc. Through proper processes and procedures, it becomes possible to join these alloys. However, this union can generate detrimental factors in its performance, among them, the residual stresses. In this work, the residual stresses generated by the autogenous GTAW process, due to different interpass temperatures on the weld bead geometry, were analyzed by the Hole-Drilling technique in dissimilar welding joints of stainless steel AISI 316L and Inconel 718 alloy. In addition, the Vickers microhardness measurements were carried out to evaluate the hardness profile in the cross section of the weld bead covering base metal (BM), heat affect zone (HAZ) and weld metal (WM). We found that in the interface region between BM and HAZ of each dissimilar joint metal, residual stresses increased above 300 MPa, while hardness increased above 160 HV.ABM, ABC, ABPol2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700262Materials Research v.22 suppl.1 2019reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2018-0844info:eu-repo/semantics/openAccessGomes,Diogo de AmorimCastro,José AdilsonXavier,Carlos RobertoLima,Carlos Augusto Cardosoeng2019-11-27T00:00:00Zoai:scielo:S1516-14392019000700262Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2019-11-27T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
title Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
spellingShingle Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
Gomes,Diogo de Amorim
Stainless Steel AISI 316L
Inconel 718
Autogenous GTAW
Dissimilar Joints
Residual Stress
Hole-Drilling
Hardness.
title_short Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
title_full Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
title_fullStr Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
title_full_unstemmed Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
title_sort Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316L and Inconel 718 Alloy by Autogenous GTAW Process
author Gomes,Diogo de Amorim
author_facet Gomes,Diogo de Amorim
Castro,José Adilson
Xavier,Carlos Roberto
Lima,Carlos Augusto Cardoso
author_role author
author2 Castro,José Adilson
Xavier,Carlos Roberto
Lima,Carlos Augusto Cardoso
author2_role author
author
author
dc.contributor.author.fl_str_mv Gomes,Diogo de Amorim
Castro,José Adilson
Xavier,Carlos Roberto
Lima,Carlos Augusto Cardoso
dc.subject.por.fl_str_mv Stainless Steel AISI 316L
Inconel 718
Autogenous GTAW
Dissimilar Joints
Residual Stress
Hole-Drilling
Hardness.
topic Stainless Steel AISI 316L
Inconel 718
Autogenous GTAW
Dissimilar Joints
Residual Stress
Hole-Drilling
Hardness.
description Stainless steel and nickel alloy have high corrosion resistance in high-temperature environments due to the high Cr content present in their chemical composition, being widely used in components of nuclear reactors, petrochemical industries, etc. Through proper processes and procedures, it becomes possible to join these alloys. However, this union can generate detrimental factors in its performance, among them, the residual stresses. In this work, the residual stresses generated by the autogenous GTAW process, due to different interpass temperatures on the weld bead geometry, were analyzed by the Hole-Drilling technique in dissimilar welding joints of stainless steel AISI 316L and Inconel 718 alloy. In addition, the Vickers microhardness measurements were carried out to evaluate the hardness profile in the cross section of the weld bead covering base metal (BM), heat affect zone (HAZ) and weld metal (WM). We found that in the interface region between BM and HAZ of each dissimilar joint metal, residual stresses increased above 300 MPa, while hardness increased above 160 HV.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700262
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700262
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2018-0844
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.22 suppl.1 2019
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212676148396032