Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling

Detalhes bibliográficos
Autor(a) principal: Khalaj,Gholamreza
Data de Publicação: 2013
Outros Autores: Nazari,Ali, Livary,Akbar Karimi
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000400005
Resumo: The paper presents some results of the research connected with the development of new approach based on the Adaptive Network-based Fuzzy Inference Systems (ANFIS) of predicting the Vickers microhardness of the phase constituents occurring in five steel samples after continuous cooling. The independent variables in the model are chemical compositions, initial austenite grain size and cooling rate over the temperature range of the occurrence of phase transformations. To construct these models, 114 different experimental data were gathered from the literature. The data used in the ANFIS model is arranged in a format of twelve input parameters that cover the chemical compositions, initial austenite grain size and cooling rate, and output parameter which is Vickers microhardness. In this model, the training and testing results in the ANFIS systems have shown strong potential for prediction of effects of chemical compositions and heat treatments on hardness of microalloyed steels.
id ABMABCABPOL-1_4ee83d6f9998842891bac33efc148095
oai_identifier_str oai:scielo:S1516-14392013000400005
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous coolingadaptive network -based fuzzy inference systems (ANFIS)microalloyed steelcontinuous coolingHSLA steelThe paper presents some results of the research connected with the development of new approach based on the Adaptive Network-based Fuzzy Inference Systems (ANFIS) of predicting the Vickers microhardness of the phase constituents occurring in five steel samples after continuous cooling. The independent variables in the model are chemical compositions, initial austenite grain size and cooling rate over the temperature range of the occurrence of phase transformations. To construct these models, 114 different experimental data were gathered from the literature. The data used in the ANFIS model is arranged in a format of twelve input parameters that cover the chemical compositions, initial austenite grain size and cooling rate, and output parameter which is Vickers microhardness. In this model, the training and testing results in the ANFIS systems have shown strong potential for prediction of effects of chemical compositions and heat treatments on hardness of microalloyed steels.ABM, ABC, ABPol2013-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000400005Materials Research v.16 n.4 2013reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392013005000052info:eu-repo/semantics/openAccessKhalaj,GholamrezaNazari,AliLivary,Akbar Karimieng2016-08-16T00:00:00Zoai:scielo:S1516-14392013000400005Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2016-08-16T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling
title Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling
spellingShingle Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling
Khalaj,Gholamreza
adaptive network -based fuzzy inference systems (ANFIS)
microalloyed steel
continuous cooling
HSLA steel
title_short Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling
title_full Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling
title_fullStr Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling
title_full_unstemmed Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling
title_sort Application of ANFIS for modeling of microhardness of high strength low alloy (HSLA) steels in continuous cooling
author Khalaj,Gholamreza
author_facet Khalaj,Gholamreza
Nazari,Ali
Livary,Akbar Karimi
author_role author
author2 Nazari,Ali
Livary,Akbar Karimi
author2_role author
author
dc.contributor.author.fl_str_mv Khalaj,Gholamreza
Nazari,Ali
Livary,Akbar Karimi
dc.subject.por.fl_str_mv adaptive network -based fuzzy inference systems (ANFIS)
microalloyed steel
continuous cooling
HSLA steel
topic adaptive network -based fuzzy inference systems (ANFIS)
microalloyed steel
continuous cooling
HSLA steel
description The paper presents some results of the research connected with the development of new approach based on the Adaptive Network-based Fuzzy Inference Systems (ANFIS) of predicting the Vickers microhardness of the phase constituents occurring in five steel samples after continuous cooling. The independent variables in the model are chemical compositions, initial austenite grain size and cooling rate over the temperature range of the occurrence of phase transformations. To construct these models, 114 different experimental data were gathered from the literature. The data used in the ANFIS model is arranged in a format of twelve input parameters that cover the chemical compositions, initial austenite grain size and cooling rate, and output parameter which is Vickers microhardness. In this model, the training and testing results in the ANFIS systems have shown strong potential for prediction of effects of chemical compositions and heat treatments on hardness of microalloyed steels.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000400005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000400005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1516-14392013005000052
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.16 n.4 2013
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212662882861056