Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study

Detalhes bibliográficos
Autor(a) principal: Tanure,Leandro Paulo de Almeida Reis
Data de Publicação: 2017
Outros Autores: Alcântara,Cláudio Moreira de, Oliveira,Tarcísio Reis de, Santos,Dagoberto Brandão, Gonzalez,Berenice Mendonça
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000601650
Resumo: A comparison of the influence of microstructure and texture on mechanical behavior between the niobium-stabilized ferritic stainless steel type ASTM 430, 430Nb, and the niobium-titanium-stabilized ferritic stainless steel type ASTM 439 was performed. The two steels were supplied as cold rolled thin sheets and the annealing was interrupted in different temperatures aiming the characterization of the microstructure and texture in different stages of recrystallization using optical microscopy, Vickers microhardness and Electron Backscatter Diffraction. The annealed samples were tensile tested to determine the mechanical properties and undergone to Swift test to evaluate the drawability. The steel 430Nb showed smaller grain size and greater yield stress. The steel ASTM 439 presented higher normal anisotropy coefficient, R, and higher Limit Drawing Ratio due to greater proportion of γ fiber. These results are presented and discussed in terms of precipitates and crystallographic texture developed in the recrystallization of both steels.
id ABMABCABPOL-1_52a8b665df584029957d65e887198c0e
oai_identifier_str oai:scielo:S1516-14392017000601650
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative StudyFerritic stainless steelsmechanical behavioranisotropytextureA comparison of the influence of microstructure and texture on mechanical behavior between the niobium-stabilized ferritic stainless steel type ASTM 430, 430Nb, and the niobium-titanium-stabilized ferritic stainless steel type ASTM 439 was performed. The two steels were supplied as cold rolled thin sheets and the annealing was interrupted in different temperatures aiming the characterization of the microstructure and texture in different stages of recrystallization using optical microscopy, Vickers microhardness and Electron Backscatter Diffraction. The annealed samples were tensile tested to determine the mechanical properties and undergone to Swift test to evaluate the drawability. The steel 430Nb showed smaller grain size and greater yield stress. The steel ASTM 439 presented higher normal anisotropy coefficient, R, and higher Limit Drawing Ratio due to greater proportion of γ fiber. These results are presented and discussed in terms of precipitates and crystallographic texture developed in the recrystallization of both steels.ABM, ABC, ABPol2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000601650Materials Research v.20 n.6 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2017-0568info:eu-repo/semantics/openAccessTanure,Leandro Paulo de Almeida ReisAlcântara,Cláudio Moreira deOliveira,Tarcísio Reis deSantos,Dagoberto BrandãoGonzalez,Berenice Mendonçaeng2018-05-18T00:00:00Zoai:scielo:S1516-14392017000601650Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-05-18T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study
title Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study
spellingShingle Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study
Tanure,Leandro Paulo de Almeida Reis
Ferritic stainless steels
mechanical behavior
anisotropy
texture
title_short Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study
title_full Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study
title_fullStr Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study
title_full_unstemmed Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study
title_sort Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study
author Tanure,Leandro Paulo de Almeida Reis
author_facet Tanure,Leandro Paulo de Almeida Reis
Alcântara,Cláudio Moreira de
Oliveira,Tarcísio Reis de
Santos,Dagoberto Brandão
Gonzalez,Berenice Mendonça
author_role author
author2 Alcântara,Cláudio Moreira de
Oliveira,Tarcísio Reis de
Santos,Dagoberto Brandão
Gonzalez,Berenice Mendonça
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Tanure,Leandro Paulo de Almeida Reis
Alcântara,Cláudio Moreira de
Oliveira,Tarcísio Reis de
Santos,Dagoberto Brandão
Gonzalez,Berenice Mendonça
dc.subject.por.fl_str_mv Ferritic stainless steels
mechanical behavior
anisotropy
texture
topic Ferritic stainless steels
mechanical behavior
anisotropy
texture
description A comparison of the influence of microstructure and texture on mechanical behavior between the niobium-stabilized ferritic stainless steel type ASTM 430, 430Nb, and the niobium-titanium-stabilized ferritic stainless steel type ASTM 439 was performed. The two steels were supplied as cold rolled thin sheets and the annealing was interrupted in different temperatures aiming the characterization of the microstructure and texture in different stages of recrystallization using optical microscopy, Vickers microhardness and Electron Backscatter Diffraction. The annealed samples were tensile tested to determine the mechanical properties and undergone to Swift test to evaluate the drawability. The steel 430Nb showed smaller grain size and greater yield stress. The steel ASTM 439 presented higher normal anisotropy coefficient, R, and higher Limit Drawing Ratio due to greater proportion of γ fiber. These results are presented and discussed in terms of precipitates and crystallographic texture developed in the recrystallization of both steels.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000601650
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000601650
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2017-0568
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.20 n.6 2017
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212671530467328