Thermal characterization of commercially pure titanium for dental applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000300004 |
Resumo: | Thermal characterization of commercially pure titanium was carried out in dry air to investigate the oxidation kinetics, the oxide structures and their properties. Oxidation kinetics were performed by thermogravimetry in isothermal conditions between 300 and 750 °C for 48 hours and the oxide structures were studied by differential thermal analyses and X ray diffraction between room temperature and 1000 °C. The oxidation kinetic increases with temperature and is very fast in the initial period of oxidation, decreasing rapidly with time, especially up to 600 °C. Kinetic laws varied between the inverse logarithmic for the lower temperatures (300 and 400 °C) and the parabolic for the higher temperatures (650, 700 and 750 °C). Evidences from X ray diffraction and differential thermal analyses showed that crystallization of the passive oxide film, formed at room temperature, into anatase occurs at about 276 °C. The crystallized oxide structure is composed of anatase between 276 and 457 °C, anatase and rutile sublayers between 457 and 718 °C, and a pure layer of rutile after 718 °C. Rockwell-C adhesion tests reveled that the oxide films formed up to 600 °C have a good adhesion. Vickers indentations on the oxidized surfaces showed that the hardness of the oxide film, measured at 600 and 650 °C, is approximately 9500 MPa. At these temperatures the surface roughness varied between 0.90 and 1.30 mm. |
id |
ABMABCABPOL-1_55b5e07c39c7a8c18b66b2e463f6c79f |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392007000300004 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Thermal characterization of commercially pure titanium for dental applicationstitaniumcorrosionbiomaterialdental materialThermal characterization of commercially pure titanium was carried out in dry air to investigate the oxidation kinetics, the oxide structures and their properties. Oxidation kinetics were performed by thermogravimetry in isothermal conditions between 300 and 750 °C for 48 hours and the oxide structures were studied by differential thermal analyses and X ray diffraction between room temperature and 1000 °C. The oxidation kinetic increases with temperature and is very fast in the initial period of oxidation, decreasing rapidly with time, especially up to 600 °C. Kinetic laws varied between the inverse logarithmic for the lower temperatures (300 and 400 °C) and the parabolic for the higher temperatures (650, 700 and 750 °C). Evidences from X ray diffraction and differential thermal analyses showed that crystallization of the passive oxide film, formed at room temperature, into anatase occurs at about 276 °C. The crystallized oxide structure is composed of anatase between 276 and 457 °C, anatase and rutile sublayers between 457 and 718 °C, and a pure layer of rutile after 718 °C. Rockwell-C adhesion tests reveled that the oxide films formed up to 600 °C have a good adhesion. Vickers indentations on the oxidized surfaces showed that the hardness of the oxide film, measured at 600 and 650 °C, is approximately 9500 MPa. At these temperatures the surface roughness varied between 0.90 and 1.30 mm.ABM, ABC, ABPol2007-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000300004Materials Research v.10 n.3 2007reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392007000300004info:eu-repo/semantics/openAccessGemelli,EnoriScariot,AlexCamargo,Nelson Heriberto Almeidaeng2007-10-17T00:00:00Zoai:scielo:S1516-14392007000300004Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2007-10-17T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Thermal characterization of commercially pure titanium for dental applications |
title |
Thermal characterization of commercially pure titanium for dental applications |
spellingShingle |
Thermal characterization of commercially pure titanium for dental applications Gemelli,Enori titanium corrosion biomaterial dental material |
title_short |
Thermal characterization of commercially pure titanium for dental applications |
title_full |
Thermal characterization of commercially pure titanium for dental applications |
title_fullStr |
Thermal characterization of commercially pure titanium for dental applications |
title_full_unstemmed |
Thermal characterization of commercially pure titanium for dental applications |
title_sort |
Thermal characterization of commercially pure titanium for dental applications |
author |
Gemelli,Enori |
author_facet |
Gemelli,Enori Scariot,Alex Camargo,Nelson Heriberto Almeida |
author_role |
author |
author2 |
Scariot,Alex Camargo,Nelson Heriberto Almeida |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Gemelli,Enori Scariot,Alex Camargo,Nelson Heriberto Almeida |
dc.subject.por.fl_str_mv |
titanium corrosion biomaterial dental material |
topic |
titanium corrosion biomaterial dental material |
description |
Thermal characterization of commercially pure titanium was carried out in dry air to investigate the oxidation kinetics, the oxide structures and their properties. Oxidation kinetics were performed by thermogravimetry in isothermal conditions between 300 and 750 °C for 48 hours and the oxide structures were studied by differential thermal analyses and X ray diffraction between room temperature and 1000 °C. The oxidation kinetic increases with temperature and is very fast in the initial period of oxidation, decreasing rapidly with time, especially up to 600 °C. Kinetic laws varied between the inverse logarithmic for the lower temperatures (300 and 400 °C) and the parabolic for the higher temperatures (650, 700 and 750 °C). Evidences from X ray diffraction and differential thermal analyses showed that crystallization of the passive oxide film, formed at room temperature, into anatase occurs at about 276 °C. The crystallized oxide structure is composed of anatase between 276 and 457 °C, anatase and rutile sublayers between 457 and 718 °C, and a pure layer of rutile after 718 °C. Rockwell-C adhesion tests reveled that the oxide films formed up to 600 °C have a good adhesion. Vickers indentations on the oxidized surfaces showed that the hardness of the oxide film, measured at 600 and 650 °C, is approximately 9500 MPa. At these temperatures the surface roughness varied between 0.90 and 1.30 mm. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000300004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000300004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392007000300004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.10 n.3 2007 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212658556436480 |