Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates

Detalhes bibliográficos
Autor(a) principal: Nishino,Yoichi
Data de Publicação: 2018
Outros Autores: Kawaguchi,Ryota, Tamaoka,Satoshi, Ide,Naoki
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000800210
Resumo: The amplitude-dependent internal friction in carbon fiber reinforced plastic (CFRP) laminates subjected to fatigue cycling has been measured and analyzed to convert into the plastic strain of the order of 10-8 as a function of effective stress. The microplastic flow indeed occurs in the stress range three orders of magnitude lower than the failure stress, and the stress-strain curves tend to shift to a lower stress as the number of cycles increases, thus indicating a decrease in the CFRP strength. The microflow stress at the plastic strain of 1×10-8 keeps a constant value of about 0.4 MPa in the range less than 103 cycles but then decreases gradually, whereas the Young's modulus evaluated from the resonant frequency is almost constant up to 104 cycles where only transverse cracks are found. Thus we can successfully detect the onset of fatigue deterioration by means of the amplitude-dependent internal friction.
id ABMABCABPOL-1_56c7c99d9831497cfba5c89b855dde30
oai_identifier_str oai:scielo:S1516-14392018000800210
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic LaminatesCFRPfatigueamplitude-dependent internal frictionmicroplasticityYoung's modulusThe amplitude-dependent internal friction in carbon fiber reinforced plastic (CFRP) laminates subjected to fatigue cycling has been measured and analyzed to convert into the plastic strain of the order of 10-8 as a function of effective stress. The microplastic flow indeed occurs in the stress range three orders of magnitude lower than the failure stress, and the stress-strain curves tend to shift to a lower stress as the number of cycles increases, thus indicating a decrease in the CFRP strength. The microflow stress at the plastic strain of 1×10-8 keeps a constant value of about 0.4 MPa in the range less than 103 cycles but then decreases gradually, whereas the Young's modulus evaluated from the resonant frequency is almost constant up to 104 cycles where only transverse cracks are found. Thus we can successfully detect the onset of fatigue deterioration by means of the amplitude-dependent internal friction.ABM, ABC, ABPol2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000800210Materials Research v.21 suppl.2 2018reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2017-0858info:eu-repo/semantics/openAccessNishino,YoichiKawaguchi,RyotaTamaoka,SatoshiIde,Naokieng2018-06-04T00:00:00Zoai:scielo:S1516-14392018000800210Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-06-04T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates
title Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates
spellingShingle Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates
Nishino,Yoichi
CFRP
fatigue
amplitude-dependent internal friction
microplasticity
Young's modulus
title_short Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates
title_full Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates
title_fullStr Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates
title_full_unstemmed Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates
title_sort Amplitude-Dependent Internal Friction Study of Fatigue Deterioration in Carbon Fiber Reinforced Plastic Laminates
author Nishino,Yoichi
author_facet Nishino,Yoichi
Kawaguchi,Ryota
Tamaoka,Satoshi
Ide,Naoki
author_role author
author2 Kawaguchi,Ryota
Tamaoka,Satoshi
Ide,Naoki
author2_role author
author
author
dc.contributor.author.fl_str_mv Nishino,Yoichi
Kawaguchi,Ryota
Tamaoka,Satoshi
Ide,Naoki
dc.subject.por.fl_str_mv CFRP
fatigue
amplitude-dependent internal friction
microplasticity
Young's modulus
topic CFRP
fatigue
amplitude-dependent internal friction
microplasticity
Young's modulus
description The amplitude-dependent internal friction in carbon fiber reinforced plastic (CFRP) laminates subjected to fatigue cycling has been measured and analyzed to convert into the plastic strain of the order of 10-8 as a function of effective stress. The microplastic flow indeed occurs in the stress range three orders of magnitude lower than the failure stress, and the stress-strain curves tend to shift to a lower stress as the number of cycles increases, thus indicating a decrease in the CFRP strength. The microflow stress at the plastic strain of 1×10-8 keeps a constant value of about 0.4 MPa in the range less than 103 cycles but then decreases gradually, whereas the Young's modulus evaluated from the resonant frequency is almost constant up to 104 cycles where only transverse cracks are found. Thus we can successfully detect the onset of fatigue deterioration by means of the amplitude-dependent internal friction.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000800210
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000800210
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2017-0858
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.21 suppl.2 2018
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212673664319488