Thirteen-band Tight-binding Model for the MoS2 Monolayer

Detalhes bibliográficos
Autor(a) principal: Meneghetti Junior,Luiz Antonio
Data de Publicação: 2021
Outros Autores: Bruno-Alfonso,Alexys
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000700222
Resumo: A tight-binding model is fitted to density-functional calculations of the electronic structure of the MoS2 monolayer. The model involves 13 atomic orbitals per unit cell: the 4d orbitals of the molybdenum atom plus the 3s and 3p orbitals of each sulfur atom. The hopping and overlap couplings of each atom with its first nearest neighbors in each crystalline sublattice are considered. Different values are allowed for the intraplane and interplane S-S hopping integrals. A closed-form expression is given for the effective-mass tensor at stationary points. The isotropy of the valence and conduction bands near the edges of the fundamental gap is proven. The role played by the orbital overlapping as well as the crystal-field splitting of the molybdenum 4d level is discussed.
id ABMABCABPOL-1_59a85322fb4f5a54b2b2ed490c124acb
oai_identifier_str oai:scielo:S1516-14392021000700222
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Thirteen-band Tight-binding Model for the MoS2 Monolayertransition-metal dichalcogenideelectronic structuretight-binding modeldensity functional theoryA tight-binding model is fitted to density-functional calculations of the electronic structure of the MoS2 monolayer. The model involves 13 atomic orbitals per unit cell: the 4d orbitals of the molybdenum atom plus the 3s and 3p orbitals of each sulfur atom. The hopping and overlap couplings of each atom with its first nearest neighbors in each crystalline sublattice are considered. Different values are allowed for the intraplane and interplane S-S hopping integrals. A closed-form expression is given for the effective-mass tensor at stationary points. The isotropy of the valence and conduction bands near the edges of the fundamental gap is proven. The role played by the orbital overlapping as well as the crystal-field splitting of the molybdenum 4d level is discussed.ABM, ABC, ABPol2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000700222Materials Research v.24 suppl.1 2021reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2021-0059info:eu-repo/semantics/openAccessMeneghetti Junior,Luiz AntonioBruno-Alfonso,Alexyseng2021-10-29T00:00:00Zoai:scielo:S1516-14392021000700222Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2021-10-29T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Thirteen-band Tight-binding Model for the MoS2 Monolayer
title Thirteen-band Tight-binding Model for the MoS2 Monolayer
spellingShingle Thirteen-band Tight-binding Model for the MoS2 Monolayer
Meneghetti Junior,Luiz Antonio
transition-metal dichalcogenide
electronic structure
tight-binding model
density functional theory
title_short Thirteen-band Tight-binding Model for the MoS2 Monolayer
title_full Thirteen-band Tight-binding Model for the MoS2 Monolayer
title_fullStr Thirteen-band Tight-binding Model for the MoS2 Monolayer
title_full_unstemmed Thirteen-band Tight-binding Model for the MoS2 Monolayer
title_sort Thirteen-band Tight-binding Model for the MoS2 Monolayer
author Meneghetti Junior,Luiz Antonio
author_facet Meneghetti Junior,Luiz Antonio
Bruno-Alfonso,Alexys
author_role author
author2 Bruno-Alfonso,Alexys
author2_role author
dc.contributor.author.fl_str_mv Meneghetti Junior,Luiz Antonio
Bruno-Alfonso,Alexys
dc.subject.por.fl_str_mv transition-metal dichalcogenide
electronic structure
tight-binding model
density functional theory
topic transition-metal dichalcogenide
electronic structure
tight-binding model
density functional theory
description A tight-binding model is fitted to density-functional calculations of the electronic structure of the MoS2 monolayer. The model involves 13 atomic orbitals per unit cell: the 4d orbitals of the molybdenum atom plus the 3s and 3p orbitals of each sulfur atom. The hopping and overlap couplings of each atom with its first nearest neighbors in each crystalline sublattice are considered. Different values are allowed for the intraplane and interplane S-S hopping integrals. A closed-form expression is given for the effective-mass tensor at stationary points. The isotropy of the valence and conduction bands near the edges of the fundamental gap is proven. The role played by the orbital overlapping as well as the crystal-field splitting of the molybdenum 4d level is discussed.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000700222
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000700222
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2021-0059
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.24 suppl.1 2021
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212679798489088