Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392004000100018 |
Resumo: | The addition of small quantities of reactive elements such as rare earths (RE) to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 °C. The morphology of the rare earth (RE) oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 °C was observed. |
id |
ABMABCABPOL-1_6235f00f8270d5b576b3fce63ad88843 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392004000100018 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloysoxidationrare earthcoatingsThe addition of small quantities of reactive elements such as rare earths (RE) to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 °C. The morphology of the rare earth (RE) oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 °C was observed.ABM, ABC, ABPol2004-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392004000100018Materials Research v.7 n.1 2004reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392004000100018info:eu-repo/semantics/openAccessFernandes,Stela Maria de CarvalhoRamanathan,Lalgudi Venkataramaneng2004-05-25T00:00:00Zoai:scielo:S1516-14392004000100018Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2004-05-25T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys |
title |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys |
spellingShingle |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys Fernandes,Stela Maria de Carvalho oxidation rare earth coatings |
title_short |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys |
title_full |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys |
title_fullStr |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys |
title_full_unstemmed |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys |
title_sort |
Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys |
author |
Fernandes,Stela Maria de Carvalho |
author_facet |
Fernandes,Stela Maria de Carvalho Ramanathan,Lalgudi Venkataraman |
author_role |
author |
author2 |
Ramanathan,Lalgudi Venkataraman |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Fernandes,Stela Maria de Carvalho Ramanathan,Lalgudi Venkataraman |
dc.subject.por.fl_str_mv |
oxidation rare earth coatings |
topic |
oxidation rare earth coatings |
description |
The addition of small quantities of reactive elements such as rare earths (RE) to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 °C. The morphology of the rare earth (RE) oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 °C was observed. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392004000100018 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392004000100018 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392004000100018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.7 n.1 2004 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212657671438336 |