Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study

Detalhes bibliográficos
Autor(a) principal: Ribeiro,Sebastião
Data de Publicação: 2015
Outros Autores: Ribeiro,Giseli Cristina, Oliveira,Marcela Rego de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000300525
Resumo: Silicon carbide (SiC) ceramics show excellent performance at high temperatures. Due to the high covalence of Si-C bonds, these ceramics are produced successfully only via liquid phase sintering (LPS). In this work, SiC ceramics were sintered via LPS using eutectic mixtures of Al2O3+Y2O3, which served as a standard for comparison, Al2O3+Yb2O3 and Al2O3+Dy2O3. The oxides mixtures were used to form liquid phase during the SiC sintering. Mixtures of SiC and additives were ground, pressed at 300 MPa and sintered at 1950ºC for 2 hours. All mixtures showed similar hardness, fracture toughness and flexural strength slightly different. Also the microstructure and crystalline phase were similar, showing that the ytterbium's and dysprosium's oxides can be also used as additive as well the most used oxide, yttrium oxide.
id ABMABCABPOL-1_66a3917946e5168882967e70f5ae71d4
oai_identifier_str oai:scielo:S1516-14392015000300525
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Studysilicon carbideliquid phase sinteringrare earths oxidemechanical propertiesSilicon carbide (SiC) ceramics show excellent performance at high temperatures. Due to the high covalence of Si-C bonds, these ceramics are produced successfully only via liquid phase sintering (LPS). In this work, SiC ceramics were sintered via LPS using eutectic mixtures of Al2O3+Y2O3, which served as a standard for comparison, Al2O3+Yb2O3 and Al2O3+Dy2O3. The oxides mixtures were used to form liquid phase during the SiC sintering. Mixtures of SiC and additives were ground, pressed at 300 MPa and sintered at 1950ºC for 2 hours. All mixtures showed similar hardness, fracture toughness and flexural strength slightly different. Also the microstructure and crystalline phase were similar, showing that the ytterbium's and dysprosium's oxides can be also used as additive as well the most used oxide, yttrium oxide.ABM, ABC, ABPol2015-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000300525Materials Research v.18 n.3 2015reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1516-1439.311314info:eu-repo/semantics/openAccessRibeiro,SebastiãoRibeiro,Giseli CristinaOliveira,Marcela Rego deeng2015-08-04T00:00:00Zoai:scielo:S1516-14392015000300525Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2015-08-04T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study
title Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study
spellingShingle Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study
Ribeiro,Sebastião
silicon carbide
liquid phase sintering
rare earths oxide
mechanical properties
title_short Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study
title_full Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study
title_fullStr Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study
title_full_unstemmed Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study
title_sort Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study
author Ribeiro,Sebastião
author_facet Ribeiro,Sebastião
Ribeiro,Giseli Cristina
Oliveira,Marcela Rego de
author_role author
author2 Ribeiro,Giseli Cristina
Oliveira,Marcela Rego de
author2_role author
author
dc.contributor.author.fl_str_mv Ribeiro,Sebastião
Ribeiro,Giseli Cristina
Oliveira,Marcela Rego de
dc.subject.por.fl_str_mv silicon carbide
liquid phase sintering
rare earths oxide
mechanical properties
topic silicon carbide
liquid phase sintering
rare earths oxide
mechanical properties
description Silicon carbide (SiC) ceramics show excellent performance at high temperatures. Due to the high covalence of Si-C bonds, these ceramics are produced successfully only via liquid phase sintering (LPS). In this work, SiC ceramics were sintered via LPS using eutectic mixtures of Al2O3+Y2O3, which served as a standard for comparison, Al2O3+Yb2O3 and Al2O3+Dy2O3. The oxides mixtures were used to form liquid phase during the SiC sintering. Mixtures of SiC and additives were ground, pressed at 300 MPa and sintered at 1950ºC for 2 hours. All mixtures showed similar hardness, fracture toughness and flexural strength slightly different. Also the microstructure and crystalline phase were similar, showing that the ytterbium's and dysprosium's oxides can be also used as additive as well the most used oxide, yttrium oxide.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000300525
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000300525
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1516-1439.311314
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.18 n.3 2015
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212665472843776