Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000100007 |
Resumo: | This work focused on the characterization physical and microstructural of the self-reducing pellet made of Electric Arc Furnace (EAF) dust using different low cost techniques. The serial sectioning technique was used to evaluate detailed measurements of pore connections, tortuositiy of pores and porosity distribution. The chemical analysis using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), Scanning Electron Microscopy (SEM), Optical Microscopy (OM) and X-ray diffraction were carried out to identify the common phases presented in EAF dust agglomerate. It was observed that the pellet phase composition is formed by iron as magnetite, metallic iron, wustite, and zinc ferrite. The visualization of the reconstructed 3D microstructure provided average qualitative and quantitative analysis of the porosity (41.61%), a consistent result and in accordance with that obtained by pycnometry technique (41.53%). As expected, these results are more precise when compared with the result obtained by two-dimensional technique (23.41%). In addition, it was calculated the value of the tortuosity parameter (0.84) that suggested a morphological structure closest to cylindrical shape. |
id |
ABMABCABPOL-1_74e8f60b4c78eb0ed46a433259a067c7 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392014000100007 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust3D reconstructionserial sectioningself-reducing pelletEAF dustThis work focused on the characterization physical and microstructural of the self-reducing pellet made of Electric Arc Furnace (EAF) dust using different low cost techniques. The serial sectioning technique was used to evaluate detailed measurements of pore connections, tortuositiy of pores and porosity distribution. The chemical analysis using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), Scanning Electron Microscopy (SEM), Optical Microscopy (OM) and X-ray diffraction were carried out to identify the common phases presented in EAF dust agglomerate. It was observed that the pellet phase composition is formed by iron as magnetite, metallic iron, wustite, and zinc ferrite. The visualization of the reconstructed 3D microstructure provided average qualitative and quantitative analysis of the porosity (41.61%), a consistent result and in accordance with that obtained by pycnometry technique (41.53%). As expected, these results are more precise when compared with the result obtained by two-dimensional technique (23.41%). In addition, it was calculated the value of the tortuosity parameter (0.84) that suggested a morphological structure closest to cylindrical shape.ABM, ABC, ABPol2014-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000100007Materials Research v.17 n.1 2014reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392013005000139info:eu-repo/semantics/openAccessRocha,Elisa Pinto daCastro,José Adilson deeng2014-03-13T00:00:00Zoai:scielo:S1516-14392014000100007Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2014-03-13T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust |
title |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust |
spellingShingle |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust Rocha,Elisa Pinto da 3D reconstruction serial sectioning self-reducing pellet EAF dust |
title_short |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust |
title_full |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust |
title_fullStr |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust |
title_full_unstemmed |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust |
title_sort |
Characterization and three-dimensional reconstruction of pores of self-reducing pellets done by EAF dust |
author |
Rocha,Elisa Pinto da |
author_facet |
Rocha,Elisa Pinto da Castro,José Adilson de |
author_role |
author |
author2 |
Castro,José Adilson de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Rocha,Elisa Pinto da Castro,José Adilson de |
dc.subject.por.fl_str_mv |
3D reconstruction serial sectioning self-reducing pellet EAF dust |
topic |
3D reconstruction serial sectioning self-reducing pellet EAF dust |
description |
This work focused on the characterization physical and microstructural of the self-reducing pellet made of Electric Arc Furnace (EAF) dust using different low cost techniques. The serial sectioning technique was used to evaluate detailed measurements of pore connections, tortuositiy of pores and porosity distribution. The chemical analysis using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), Scanning Electron Microscopy (SEM), Optical Microscopy (OM) and X-ray diffraction were carried out to identify the common phases presented in EAF dust agglomerate. It was observed that the pellet phase composition is formed by iron as magnetite, metallic iron, wustite, and zinc ferrite. The visualization of the reconstructed 3D microstructure provided average qualitative and quantitative analysis of the porosity (41.61%), a consistent result and in accordance with that obtained by pycnometry technique (41.53%). As expected, these results are more precise when compared with the result obtained by two-dimensional technique (23.41%). In addition, it was calculated the value of the tortuosity parameter (0.84) that suggested a morphological structure closest to cylindrical shape. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000100007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000100007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392013005000139 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.17 n.1 2014 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212663670341632 |