Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000200411 |
Resumo: | Novel structures of Y3Al5O12: Eu3+ (denoted as YAG: Eu3+ for short) nanobelts were fabricated by calcination of the electrospun PVP/[Y(NO3)3+Eu(NO3)3+Al(NO3)3] composite nanobelts. X-ray powder diffraction (XRD) analysis showed that YAG: Eu3+ nanobelts were cubic in structure with space group Ia3d. Fourier transform infrared spectroscopy (FTIR) analysis manifested that pure YAG: Eu3+ nanobelts were formed at 900 °C. Scanning electron microscope (SEM) analysis indicated that the YAG: Eu3+ nanobelts have coarse surface. The width and thickness of YAG: Eu3+ nanobelts were ca. 3.25 µm and ca. 220 nm, respectively. Fluorescence spectra analysis revealed that YAG: Eu3+ nanobelts emitted the main strong emission centering at 592 nm under the ultraviolet excitation of 235 nm, which was attributed to 5D0→7F1 of Eu3+, and the optimum doping molar concentration of Eu3+ ions was 5%. CIE analysis demonstrated that the emitting colors of YAG: Eu3+ nanobelts could be tuned by adjusting doping concentration of Eu3+. The possible formation mechanism of YAG: Eu3+ nanobelts was also proposed. |
id |
ABMABCABPOL-1_7849238ee8edea899282900f50f2e76d |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392015000200411 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ NanobeltselectrospinningYAG: Eu3+nanobeltsphosphorNovel structures of Y3Al5O12: Eu3+ (denoted as YAG: Eu3+ for short) nanobelts were fabricated by calcination of the electrospun PVP/[Y(NO3)3+Eu(NO3)3+Al(NO3)3] composite nanobelts. X-ray powder diffraction (XRD) analysis showed that YAG: Eu3+ nanobelts were cubic in structure with space group Ia3d. Fourier transform infrared spectroscopy (FTIR) analysis manifested that pure YAG: Eu3+ nanobelts were formed at 900 °C. Scanning electron microscope (SEM) analysis indicated that the YAG: Eu3+ nanobelts have coarse surface. The width and thickness of YAG: Eu3+ nanobelts were ca. 3.25 µm and ca. 220 nm, respectively. Fluorescence spectra analysis revealed that YAG: Eu3+ nanobelts emitted the main strong emission centering at 592 nm under the ultraviolet excitation of 235 nm, which was attributed to 5D0→7F1 of Eu3+, and the optimum doping molar concentration of Eu3+ ions was 5%. CIE analysis demonstrated that the emitting colors of YAG: Eu3+ nanobelts could be tuned by adjusting doping concentration of Eu3+. The possible formation mechanism of YAG: Eu3+ nanobelts was also proposed.ABM, ABC, ABPol2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000200411Materials Research v.18 n.2 2015reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1516-1439.351314info:eu-repo/semantics/openAccessBi,FeiDong,XiangtingWang,JinxianLiu,Guixiaeng2016-06-10T00:00:00Zoai:scielo:S1516-14392015000200411Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2016-06-10T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts |
title |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts |
spellingShingle |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts Bi,Fei electrospinning YAG: Eu3+ nanobelts phosphor |
title_short |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts |
title_full |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts |
title_fullStr |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts |
title_full_unstemmed |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts |
title_sort |
Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts |
author |
Bi,Fei |
author_facet |
Bi,Fei Dong,Xiangting Wang,Jinxian Liu,Guixia |
author_role |
author |
author2 |
Dong,Xiangting Wang,Jinxian Liu,Guixia |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bi,Fei Dong,Xiangting Wang,Jinxian Liu,Guixia |
dc.subject.por.fl_str_mv |
electrospinning YAG: Eu3+ nanobelts phosphor |
topic |
electrospinning YAG: Eu3+ nanobelts phosphor |
description |
Novel structures of Y3Al5O12: Eu3+ (denoted as YAG: Eu3+ for short) nanobelts were fabricated by calcination of the electrospun PVP/[Y(NO3)3+Eu(NO3)3+Al(NO3)3] composite nanobelts. X-ray powder diffraction (XRD) analysis showed that YAG: Eu3+ nanobelts were cubic in structure with space group Ia3d. Fourier transform infrared spectroscopy (FTIR) analysis manifested that pure YAG: Eu3+ nanobelts were formed at 900 °C. Scanning electron microscope (SEM) analysis indicated that the YAG: Eu3+ nanobelts have coarse surface. The width and thickness of YAG: Eu3+ nanobelts were ca. 3.25 µm and ca. 220 nm, respectively. Fluorescence spectra analysis revealed that YAG: Eu3+ nanobelts emitted the main strong emission centering at 592 nm under the ultraviolet excitation of 235 nm, which was attributed to 5D0→7F1 of Eu3+, and the optimum doping molar concentration of Eu3+ ions was 5%. CIE analysis demonstrated that the emitting colors of YAG: Eu3+ nanobelts could be tuned by adjusting doping concentration of Eu3+. The possible formation mechanism of YAG: Eu3+ nanobelts was also proposed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000200411 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000200411 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1516-1439.351314 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.18 n.2 2015 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212665452920832 |