Behavior of granite-epoxy composite beams subjected to mechanical vibrations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400012 |
Resumo: | The capacity to damp mechanical vibrations is one of the most important properties of granite-epoxy composites, even superior to the cast iron one. For this reason, these materials have been adopted for manufacturing of tool machine foundations and precision instruments. This work presents a study concerning the behavior of particulate composite beams, based on granite powder and epoxy, subjected to mechanical vibrations. Composite samples were prepared with different combinations of processing variables, like the weight fraction of epoxy in the mixture and size distributions of granite particles. The damping behavior of the material was investigated adopting the logarithmic decrement method. Samples, in the form of prismatic beams, were excited in the middle point and the output signal was measured in a point located at the extremity. The obtained results showed that composite samples, with weight fractions of about 80% of granite and 20% of epoxy, presented damping properties approximately three times greater than gray cast iron. |
id |
ABMABCABPOL-1_7acc582b59bb1f850a522d16144e2bb8 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392010000400012 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Behavior of granite-epoxy composite beams subjected to mechanical vibrationsparticulate compositesgranite-epoxyvibration dampingThe capacity to damp mechanical vibrations is one of the most important properties of granite-epoxy composites, even superior to the cast iron one. For this reason, these materials have been adopted for manufacturing of tool machine foundations and precision instruments. This work presents a study concerning the behavior of particulate composite beams, based on granite powder and epoxy, subjected to mechanical vibrations. Composite samples were prepared with different combinations of processing variables, like the weight fraction of epoxy in the mixture and size distributions of granite particles. The damping behavior of the material was investigated adopting the logarithmic decrement method. Samples, in the form of prismatic beams, were excited in the middle point and the output signal was measured in a point located at the extremity. The obtained results showed that composite samples, with weight fractions of about 80% of granite and 20% of epoxy, presented damping properties approximately three times greater than gray cast iron.ABM, ABC, ABPol2010-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400012Materials Research v.13 n.4 2010reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392010000400012info:eu-repo/semantics/openAccessPiratelli-Filho,AntonioLevy-Neto,Flamínioeng2011-01-24T00:00:00Zoai:scielo:S1516-14392010000400012Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2011-01-24T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Behavior of granite-epoxy composite beams subjected to mechanical vibrations |
title |
Behavior of granite-epoxy composite beams subjected to mechanical vibrations |
spellingShingle |
Behavior of granite-epoxy composite beams subjected to mechanical vibrations Piratelli-Filho,Antonio particulate composites granite-epoxy vibration damping |
title_short |
Behavior of granite-epoxy composite beams subjected to mechanical vibrations |
title_full |
Behavior of granite-epoxy composite beams subjected to mechanical vibrations |
title_fullStr |
Behavior of granite-epoxy composite beams subjected to mechanical vibrations |
title_full_unstemmed |
Behavior of granite-epoxy composite beams subjected to mechanical vibrations |
title_sort |
Behavior of granite-epoxy composite beams subjected to mechanical vibrations |
author |
Piratelli-Filho,Antonio |
author_facet |
Piratelli-Filho,Antonio Levy-Neto,Flamínio |
author_role |
author |
author2 |
Levy-Neto,Flamínio |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Piratelli-Filho,Antonio Levy-Neto,Flamínio |
dc.subject.por.fl_str_mv |
particulate composites granite-epoxy vibration damping |
topic |
particulate composites granite-epoxy vibration damping |
description |
The capacity to damp mechanical vibrations is one of the most important properties of granite-epoxy composites, even superior to the cast iron one. For this reason, these materials have been adopted for manufacturing of tool machine foundations and precision instruments. This work presents a study concerning the behavior of particulate composite beams, based on granite powder and epoxy, subjected to mechanical vibrations. Composite samples were prepared with different combinations of processing variables, like the weight fraction of epoxy in the mixture and size distributions of granite particles. The damping behavior of the material was investigated adopting the logarithmic decrement method. Samples, in the form of prismatic beams, were excited in the middle point and the output signal was measured in a point located at the extremity. The obtained results showed that composite samples, with weight fractions of about 80% of granite and 20% of epoxy, presented damping properties approximately three times greater than gray cast iron. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400012 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392010000400012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392010000400012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.13 n.4 2010 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212659709870080 |