Photo-induced dipole relaxation current in natural Amethyst
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000300018 |
Resumo: | Thermally stimulated depolarization current (TSDC) measurements were carried out for SiO2 in the amethyst form, aiming to investigate the relationship of observed current with relaxation phenomena related to quartz impurities. In addition to TSDC conventional dark procedure, photo-induced TSDC was also carried out, where the exciting light came from an Ar+ laser, tuned either at 488 nm or at 541 nm. X-ray diffraction and optical absorption measurements were used as complement for the interpretation of TSDC data. Optical absorption data, mainly in the range 400-700 nm, allow identifying the characteristic bands of amethyst as well as to relate them with TSDC and photo-induced TSDC data, leading to a relationship between absorption bands and light irradiation with selected wavelengths. These results allow determining how the formation of a TSDC band in the range 220-260 K, is affected by the light absorption, modifying the formation and the dipole orientation distribution in the samples. Results also help the verification of defects formed by Fe3+ or Fe4+ ions in the amethyst structure, as well as suggest that these defects, besides the participation in the amethyst structure as color centers, also play a role in the formation of TSDC bands, contributing for the observed effect of monochromatic light irradiation on these bands. |
id |
ABMABCABPOL-1_88dfd91356edad667948310a3cbd8c0e |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392012000300018 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Photo-induced dipole relaxation current in natural Amethystrelaxation currentamethystdipolesTSDCThermally stimulated depolarization current (TSDC) measurements were carried out for SiO2 in the amethyst form, aiming to investigate the relationship of observed current with relaxation phenomena related to quartz impurities. In addition to TSDC conventional dark procedure, photo-induced TSDC was also carried out, where the exciting light came from an Ar+ laser, tuned either at 488 nm or at 541 nm. X-ray diffraction and optical absorption measurements were used as complement for the interpretation of TSDC data. Optical absorption data, mainly in the range 400-700 nm, allow identifying the characteristic bands of amethyst as well as to relate them with TSDC and photo-induced TSDC data, leading to a relationship between absorption bands and light irradiation with selected wavelengths. These results allow determining how the formation of a TSDC band in the range 220-260 K, is affected by the light absorption, modifying the formation and the dipole orientation distribution in the samples. Results also help the verification of defects formed by Fe3+ or Fe4+ ions in the amethyst structure, as well as suggest that these defects, besides the participation in the amethyst structure as color centers, also play a role in the formation of TSDC bands, contributing for the observed effect of monochromatic light irradiation on these bands.ABM, ABC, ABPol2012-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000300018Materials Research v.15 n.3 2012reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392012005000052info:eu-repo/semantics/openAccessRusso,Fabricio TrombiniScalvi,Rosa Maria FernandesScalvi,Luis Vicente de AndradeVismara,Marcus Vinicius Gonçalveseng2012-06-20T00:00:00Zoai:scielo:S1516-14392012000300018Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2012-06-20T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Photo-induced dipole relaxation current in natural Amethyst |
title |
Photo-induced dipole relaxation current in natural Amethyst |
spellingShingle |
Photo-induced dipole relaxation current in natural Amethyst Russo,Fabricio Trombini relaxation current amethyst dipoles TSDC |
title_short |
Photo-induced dipole relaxation current in natural Amethyst |
title_full |
Photo-induced dipole relaxation current in natural Amethyst |
title_fullStr |
Photo-induced dipole relaxation current in natural Amethyst |
title_full_unstemmed |
Photo-induced dipole relaxation current in natural Amethyst |
title_sort |
Photo-induced dipole relaxation current in natural Amethyst |
author |
Russo,Fabricio Trombini |
author_facet |
Russo,Fabricio Trombini Scalvi,Rosa Maria Fernandes Scalvi,Luis Vicente de Andrade Vismara,Marcus Vinicius Gonçalves |
author_role |
author |
author2 |
Scalvi,Rosa Maria Fernandes Scalvi,Luis Vicente de Andrade Vismara,Marcus Vinicius Gonçalves |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Russo,Fabricio Trombini Scalvi,Rosa Maria Fernandes Scalvi,Luis Vicente de Andrade Vismara,Marcus Vinicius Gonçalves |
dc.subject.por.fl_str_mv |
relaxation current amethyst dipoles TSDC |
topic |
relaxation current amethyst dipoles TSDC |
description |
Thermally stimulated depolarization current (TSDC) measurements were carried out for SiO2 in the amethyst form, aiming to investigate the relationship of observed current with relaxation phenomena related to quartz impurities. In addition to TSDC conventional dark procedure, photo-induced TSDC was also carried out, where the exciting light came from an Ar+ laser, tuned either at 488 nm or at 541 nm. X-ray diffraction and optical absorption measurements were used as complement for the interpretation of TSDC data. Optical absorption data, mainly in the range 400-700 nm, allow identifying the characteristic bands of amethyst as well as to relate them with TSDC and photo-induced TSDC data, leading to a relationship between absorption bands and light irradiation with selected wavelengths. These results allow determining how the formation of a TSDC band in the range 220-260 K, is affected by the light absorption, modifying the formation and the dipole orientation distribution in the samples. Results also help the verification of defects formed by Fe3+ or Fe4+ ions in the amethyst structure, as well as suggest that these defects, besides the participation in the amethyst structure as color centers, also play a role in the formation of TSDC bands, contributing for the observed effect of monochromatic light irradiation on these bands. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000300018 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000300018 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392012005000052 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.15 n.3 2012 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212661312094208 |