Interdiffusion studies on hot rolled U-10Mo/AA1050
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000600019 |
Resumo: | The U-Mo alloys are investigated with the goal to become nuclear material to fabricate high-density fuel elements for high performance research reactors. The enrichment level (20% 235U) suggests that the U-Mo alloys should be between 6 to 10 wt. (%), which can reach up to 9 gU.cm-3 in fuel density. Nevertheless, the U-Mo alloys are very reactive with Al. Interdiffusion reaction products are formed since nuclear fission promotes chemical interaction layer during operation, leading to potential structural failure. Present studies were made with treated hot rolled diffusion couples of U-10Mo inserted in Al (AA1050). The U-10Mo/AA1050 pairs were treated in two temperatures (150 ºC and 550 ºC) with three soaking times (5, 40 and 80 hours). From microstructure analyses, rapid diffusion of Al happened inside U-10Mo in the first heating at 540 ºC during 15 minutes, reaching 8 at% Al in a range of 170 μm towards U-10Mo. Longer time at 550 ºC treatment maintain this level of Al-content up to 1000 μm inside U-10Mo. In this study, the results suggested the formation of a barrier made by residual elements, which promoted little interdiffusion phenomena between U-10Mo and alloy AA1050. Silicon co-diffusion with Al, along the interdiffusion line, is thought to be an important indication for this interdiffusion blockage. |
id |
ABMABCABPOL-1_8a0b1b02aa37034768184cfd050061ae |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392012000600019 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Interdiffusion studies on hot rolled U-10Mo/AA1050U-Monuclear fuelresearch reactorsinteraction layerAl/U-Mo interdiffusion pairThe U-Mo alloys are investigated with the goal to become nuclear material to fabricate high-density fuel elements for high performance research reactors. The enrichment level (20% 235U) suggests that the U-Mo alloys should be between 6 to 10 wt. (%), which can reach up to 9 gU.cm-3 in fuel density. Nevertheless, the U-Mo alloys are very reactive with Al. Interdiffusion reaction products are formed since nuclear fission promotes chemical interaction layer during operation, leading to potential structural failure. Present studies were made with treated hot rolled diffusion couples of U-10Mo inserted in Al (AA1050). The U-10Mo/AA1050 pairs were treated in two temperatures (150 ºC and 550 ºC) with three soaking times (5, 40 and 80 hours). From microstructure analyses, rapid diffusion of Al happened inside U-10Mo in the first heating at 540 ºC during 15 minutes, reaching 8 at% Al in a range of 170 μm towards U-10Mo. Longer time at 550 ºC treatment maintain this level of Al-content up to 1000 μm inside U-10Mo. In this study, the results suggested the formation of a barrier made by residual elements, which promoted little interdiffusion phenomena between U-10Mo and alloy AA1050. Silicon co-diffusion with Al, along the interdiffusion line, is thought to be an important indication for this interdiffusion blockage.ABM, ABC, ABPol2012-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000600019Materials Research v.15 n.6 2012reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392012005000125info:eu-repo/semantics/openAccessSaliba-Silva,Adonis MarceloMartins,Ilson CarlosCarvalho,Elita Fontenelle Urano deSilva,Davilson Gomes daRiella,Humberto GracherDurazzo,Michelangeloeng2012-11-20T00:00:00Zoai:scielo:S1516-14392012000600019Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2012-11-20T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Interdiffusion studies on hot rolled U-10Mo/AA1050 |
title |
Interdiffusion studies on hot rolled U-10Mo/AA1050 |
spellingShingle |
Interdiffusion studies on hot rolled U-10Mo/AA1050 Saliba-Silva,Adonis Marcelo U-Mo nuclear fuel research reactors interaction layer Al/U-Mo interdiffusion pair |
title_short |
Interdiffusion studies on hot rolled U-10Mo/AA1050 |
title_full |
Interdiffusion studies on hot rolled U-10Mo/AA1050 |
title_fullStr |
Interdiffusion studies on hot rolled U-10Mo/AA1050 |
title_full_unstemmed |
Interdiffusion studies on hot rolled U-10Mo/AA1050 |
title_sort |
Interdiffusion studies on hot rolled U-10Mo/AA1050 |
author |
Saliba-Silva,Adonis Marcelo |
author_facet |
Saliba-Silva,Adonis Marcelo Martins,Ilson Carlos Carvalho,Elita Fontenelle Urano de Silva,Davilson Gomes da Riella,Humberto Gracher Durazzo,Michelangelo |
author_role |
author |
author2 |
Martins,Ilson Carlos Carvalho,Elita Fontenelle Urano de Silva,Davilson Gomes da Riella,Humberto Gracher Durazzo,Michelangelo |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Saliba-Silva,Adonis Marcelo Martins,Ilson Carlos Carvalho,Elita Fontenelle Urano de Silva,Davilson Gomes da Riella,Humberto Gracher Durazzo,Michelangelo |
dc.subject.por.fl_str_mv |
U-Mo nuclear fuel research reactors interaction layer Al/U-Mo interdiffusion pair |
topic |
U-Mo nuclear fuel research reactors interaction layer Al/U-Mo interdiffusion pair |
description |
The U-Mo alloys are investigated with the goal to become nuclear material to fabricate high-density fuel elements for high performance research reactors. The enrichment level (20% 235U) suggests that the U-Mo alloys should be between 6 to 10 wt. (%), which can reach up to 9 gU.cm-3 in fuel density. Nevertheless, the U-Mo alloys are very reactive with Al. Interdiffusion reaction products are formed since nuclear fission promotes chemical interaction layer during operation, leading to potential structural failure. Present studies were made with treated hot rolled diffusion couples of U-10Mo inserted in Al (AA1050). The U-10Mo/AA1050 pairs were treated in two temperatures (150 ºC and 550 ºC) with three soaking times (5, 40 and 80 hours). From microstructure analyses, rapid diffusion of Al happened inside U-10Mo in the first heating at 540 ºC during 15 minutes, reaching 8 at% Al in a range of 170 μm towards U-10Mo. Longer time at 550 ºC treatment maintain this level of Al-content up to 1000 μm inside U-10Mo. In this study, the results suggested the formation of a barrier made by residual elements, which promoted little interdiffusion phenomena between U-10Mo and alloy AA1050. Silicon co-diffusion with Al, along the interdiffusion line, is thought to be an important indication for this interdiffusion blockage. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000600019 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000600019 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392012005000125 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.15 n.6 2012 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212661667561472 |